• ベストアンサー
  • 困ってます

数IA二次関数の問題です。

以下のような二次関数の問題があります。 二次関数f(x)=x^2-2ax+2a^2(aは実数の定数)について 0≦x≦1における最小値をmとするとき次の問いに答えよ。 (1)この二次関数のグラフの頂点の座標をaを用いて表せ (2)mをaを用いて表せ (3)m=5のときaの値を求めよ このうち(1),(2)については自分で答えを求める事ができそれぞれ合っていました。 (1)座標(a,a^2) (2)aを場合分けして a<0の場合、m=2a^2 0≦a≦1の場合、m=a^2 1<aの場合、m=2a^2-2a+1 (3)について回答を見るとa=2とa=-√10/2でした。 (3)の答えの導き方を教えてください。なぜこうなるのか良く分からないです。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • jutsu
  • ベストアンサー率33% (1/3)

(2)でaを場合分けした式にm=5を代入して求めるだけです。 a<0の場合 2a^2=5 aについて解くとa=±√10/2 でa<0を満たしているのは a=-√10/2だけ 0≦a≦1の場合 a^2=5 aについて解くとa=±√5 両方とも0≦a≦1を満たしていない 1<aの場合 2a^2-2a+1=5 aについて解くとa=-1、2 1<aを満たすのはa=2のみ  これで納得できたかな?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

うわぁ!ありがとうございます。 単純にmに5を代入すればOKと考えていたので 0≦a≦1の場合a=±√5が正解では無いのが謎だったのです。 わかり易い解説ありがとうございました。

関連するQ&A

  • 2次関数です。教えてください!

    aを定数とする。 関数f(x)=2x^2-ax+5 について、次の問いに答えよ。 (1)y=f(x)のグラフの頂点の座標を求めよ。 (2)0≦x≦4 のとき、この 2次関数の最大値と最小値 および、そのときのxの値を求めよ。

  • 高校数学 2次関数

    2次関数 y=-x²+2ax+2a (aは定数)について、次の問いに答えなさい。 ①頂点の座標を求めなさい。 ②①で求めた頂点のy座標が最小となるときのaの値を求めなさい。 という問題です。 答えと解き方を教えてください!

  • 二次関数の問題がわかりません!

    凄く急ぎの質問です! 高1の二次関数の問題がわかりません! 以下の問題の解き方&答えを教えてください! 【1】 (1)2次関数y=x^2+kx+4のグラフがx軸と接するとき、実数kの値と接点の座標を求めよ。 (2)2次関数y=x^2-2x+k+1のグラフがx軸と2点で交わるとき、実数kの値の範囲を求めよ。 【2】 aを実数の定数とする。二次関数 f(x)=x^2-2ax+a ( 1≦x≦2 )について。 (1)最小値を求めよ。 (2)最大値を求めよ。 【3】 (1)実数x、yがx^2+y^2=1をみたすとき、x+y^2の最大値、最小値を求めよ。 (2)実数x、yがx^2+y^2=1をみたすとき、2x-yの最大値、最小値を求めよ。 よろしくお願いします!

  • 三角関数の最大・最小の問題です

    関数f(x)=sin^2X+asinX+2 (-90°≦X≦90°)について考える。 但し、aは正の定数とする。 (1) a=1のとき、関数f(x)の最大値と最小値を求めよ。 (2) 関数f(x)の最小値が-3となるような定数aの値を求めよ。 このような問題で(1)はよいのですが、(2)についてです。 関数f(x)は頂点の座標が(-a/2,-a^2/4+2)から、場合分けを考え、 答えでは -a/2<-1 , -1≦-a/2<0 の2つのみの場合分けなのです。 私は、-a/2<-1 , -1≦-a/2<1 , -a/2>1 の3つの場合分けを考えたのですが、これではいけないのでしょうか? どこを間違えているのか教えて頂きたくお願申し上げます。

  • 数学I 二次関数(2)

    基本的な問題は解けるのですが以下の問題がまったく解らず、回答もないので困っています。 教えていただけないでしょうか?よろしくお願い致します。 1.aを実数として、2次関数 y=x^2-ax-a/4+1/2 のグラフについて、次の問いに答えよ。 (1)頂点の座標をaで表せ。 (2)このグラフとX軸の共有点の個数を求めよ。 2.aを実数として、2次関数 y=x^2-2ax+2a^2+a-2 の、範囲0≦x≦2 での最小値は0であるとする。 (1)a≦0 のときaを求めよ。 (2)0<a<2 のときaを求めよ。 (3)a≧2 となるaは無いことを示せ。

  • 二次関数

    二次関数f(x)=2x^2-2ax+b(a,bは定数)があり、y=f(x)のグラフの頂点のy座標は-1である。-1≦x≦2におけるf(x)の最大値をM、最小値をmとする。 (2)Mをaを用いて表せ。 (3)a>0とする。M-m=8aを満たすaの値を求める。 解法がわかりません。回答、よろしくお願いします。

  • 2次関数の最大・最小

    2次関数の最大・最小 aが実数として、a<=x<=a+2で定義される関数f(x)=x^2-2x+3がある。この関数の最大値、最小値をそれぞれM(a),m(a)とするとき、関数b=M(a),b=m(a)のグラフをab平面に(別々に)書け。 最大・最小となる候補を利用 y=d(x-p)^2+qのグラフが下に凸の場合、 ・区間α<=x<=βにおける最小値は、x=pが区間内であれば、頂点のy座標q そうでなければ、区間の端点でのf(α),f(β)のうち小さいほう ・区間α<=x<=βにおける最大値は、区間の端点での値f(α),f(β)のうちの大きいほう である。結局、「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるから、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。 教えてほしいところ 「最大値や最小値にbなる可能性のある点は、頂点と両端の点の3つのみ」であるのは理解できます。しかし、 「頂点のy座標(頂点が区間内にあるとき)、および区間の端点のy座標からなる3つのグラフを描いておき、最も高いところをたどったものが最大値のグラフ、最も低いものをたどったものが最小値のグラフである。という部分が理解できません。 何故、たどったものがそれぞれ最大値または最小値のグラフだといえるんですか?? 論理的に教えてください

  • 三次関数の問題です

    関数F(x)=Xの3乗-3(a-1)Xの二乗-12aX(aは実数の定数)のついて、F(X)の極大値M(a)のグラフをかけ。 という問題がどうしても解けません。緊急を要しています。誰か助けてください。

  • 二次関数

    二次関数y=ax²+bx+c…(1)のグラフの頂点の座標が(2,-1)であるとき、次の問いに答えよ。 (1)b、cをaで表せ。 (2)(1)の0≦x≦3における最大値が7であるとき、定数a、b、cの値を求めよ。 (1)は、じぶんなりに解いたので間違っていると思います。   頂点の座標(2,-1)を代入して、-1=4a+2b+c。   これを、aで表して(?)4a=-2b-c-1 a=-1/2b-1/4c-1/4 になりました。 (2)は解法からわかりません。(1)の訂正も含めて、よろしくお願いします。

  •  二次関数の問題教えてください

     二次関数の問題教えてください (1)2つの放物線Y=2x^2-8x+9、Y=x^2+ax+bの頂点が一致するように定数a、bの値を求めよ (2)二次関数Y=2x^2+4xのグラフをx軸方向に1、Y軸方向に-2だけ平行移動したグラフの方程式を求めよ (3)二次関数Y=2x^2-8x+5のグラフはY=2x^2+4x+7をどのように平行移動したものか (4)Y=-2x^2-4x+1(-2≦x≦1)の最大値、最小値    Y=2x^2+3x+4  (0≦x≦2)の最大値、最小値 2,3,4、は解いてみたのですが答えがあいません。 わかる方求める式も一緒に教えてください