• ベストアンサー
  • すぐに回答を!

振り子に働く減衰力について

今、長さlの棒の先に質量mの重りをつけた振り子がある(θは十分小さいとする)、という条件の下、摩擦力が存在しない場合のθに関する運動方程式(θ''+g/l・θ=0)とそれから導出される角周波数ω(ω=√g/l)は導出できたのですが、次の問題が分かりません。 (1)重りの運動速度vと質量mに比例する減衰力F=-γmvが加わった場合のθに関する運動方程式は? (2)減衰力γが小さいとして最大振幅θmaxが初期値の半分になる時間は? という問題です。分かる方がいましたら教えていただけないでしょうか?よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数831
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • akn1aj
  • ベストアンサー率50% (9/18)

なるほど、#1に紹介されているサイトは一度眼を通しておいたらよいでしょう。 それで、一般論はいいから、結局どうなの…が質問者の知りたいところではないでしょうか?…読んで考えればわかる。…確かに。でも参考になるよう、理解を深めるように答えてみます。 (1)減衰力がブレーキとなるのだから、θ'' + ω^2・θ= 0…(1)に対しv = l θ' なので、 mlθ'' + mγl θ' + mgθ= 0… (2) で θ'' + 2ζθ' + ω^2・θ= 0…(2)' となります。ここで、ζ= γ/2…(3)です。(2)'の特性方程式:t^2 + 2ζt + ω^2・t= 0…(2)''の解より(振動解なので)t = -ζ±iω√{1 - (ζ/ω)^2} ≒ -ζ±iω [∵減衰力γが小さいので1 - (ζ/ω)^2≒ 1] …(4)。t = 0 のとき θ = θmaxとして、(2)' の解:θ = θmax・e^(-ζt)cosωt…(5)。求める時間をTとして、e^(-ζT) = 1/2…(6)[最大振幅θmaxが初期値の半分になる時間は、減衰力γが小さいのでよい近似でenvelope:包絡線を考える。] よって、T ≒ ln2/ζ= 2ln2/γ…(6)。こんなとこかな、後はよく検討して下さい。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご丁寧に解説していただきありがとうございました。

その他の回答 (2)

  • 回答No.3

てか、丸投げには丸投げでNO1はすごい適切だと思います。 僕の経験でなんだけど、減衰項がある二階微方を解くプロセスが理解できるのはもっとずっと先だと思う。他の様々な知識が付いたあと、なにげに微方の本を読むと突然分かるときが来るよ。 それまでは、二次方程式の根の公式のように、結果の式だけがすぐ見れるサイトを保存しておけばいいよ。振動の図が詳しいのが良いよ。 この形の微方が出るのは今だけじゃないこの先ずっとだから。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • KENZOU
  • ベストアンサー率54% (241/444)

次のサイトに詳しく載っています。 http://www.acoust.rise.waseda.ac.jp/      ↓ 伊藤毅著「音響工学原論」      ↓   第1章振動理論

参考URL:
http://www.acoust.rise.waseda.ac.jp/

共感・感謝の気持ちを伝えよう!

質問者からのお礼

非常に参考になりました。ありがとうございました。

関連するQ&A

  • 鉛直ばね振り子の減衰振動の運動方程式について

    摩擦のある水平面でばね振り子減衰振動の運動方程式は m(d^2x/dt^2)=-kx-α(dx/dt) kはばね定数 で与えられると思いますが、鉛直ばね振り子の場合、重力のmgは運動方程式に加えなくてもよいのでしょうか? それとも 高校のころ、単振動の問題を解くとき、鉛直ばね振り子の場合はx=lを釣り合い位置としてkl=mg k=mg/l がこの場合のkであって、ばね定数とは違う値だ、というようなことを習った記憶があるのですが、この場合のkもそれでしょうか?

  • 力学・単振り子の運動方程式について

    長さLの糸に質量Mの重りをつけた振り子で最下点で水平にV0の初速を与えるという設定でまず運動方程式をたてるときに、2次元極座標をつかって、 -ML(dθ/dt)^2=MGcosθ-Tと書いてあるのですが この-ML(dθ/dt)^の部分がどのようにして導出されたか いまいちわかりません。 ご教授よろしくお願いします。

  • 運動方程式について

    以下の場合について運動方程式をかけ。必要ならば、質点の質量をm、速度をv、位置ベクトルをr等とせよ。 という設問に対して、7問の問いがあるんですが、そのうちの 1)速度に比例する摩擦力を受けて運動する。但し、摩擦の比例係数ををkとする。 と、 2)天井から長さLの糸をつるし、先端に質点をつける。この振り子の運動方程式を書け。 という2問が分かりません。僕個人の意見としては、条件が少な過ぎると思うんですが・・・(自分の勉強不足かもしれませんが。)解ける方がいましたら、どなたか宜しくお願いします。

  • 力学

    質量mの質点の運動方程式を、接線(τ)方向と法線(γ)方向に分解すると mv'=Fτ m(v^2/ρ)=Fγ となるらしいのですが、これを用いて重力加速度gの地上の単振り子の運動方程式を導出するとどうなりますか? 後、ρっていう量は何を表しているのですか?

  • 振り子の等時性について

    振り子の等時性についての質問です。 振り子の振幅が小さいときに、単振動近似で振り子の長さによらず振り子の周期が一定だということまではわかるのですが、振幅が大きくて単振動近似が使えないときに、振り子の周期と振り子の長さの関係はどうなるのでしょう。 一応運動方程式をたてて計算してみたのですが、途中でどうしても積分が解けなくなってしまって……。 振り子の等時性は、単振動近似が使えないような振幅が大きい時でも、成り立つのですか?

  • 物体に摩擦力が働く調和振動

    <<問題>> 水平な床の上を、ばね定数kのばねで繋がれた質量mの物体が運動する場合を考える。ばねの自然の長さからの変位をxとし、x軸を右方向が正となるように選ぶことにする。時刻t=0においてx=X(X≧0)で静かに手を離す場合の物体の運動について、次の問いに答えなさい。動摩擦係数をμ 重力加速度をgとする。 摩擦力が働いている場合、運動方程式は非同次方程式となる。その特別解をx=Aの形に仮定し,xが解となるようにAをμ,g,m,kで表しなさい。 <<解法>> 摩擦力が0の場合の一般解を求めて、それを摩擦力≠0の時の運動方程式に代入していくと  2 mω (Acosωt+Bsinωt)=-k(Acosωt+Bsinωt)+F ここまでは分かるのですが、ここからどのようにして Aを表していけばいいかがわかりません。 お願いします。

  • 単振り子の問題

    単振り子の長さlで、垂直方向からθの角度で手を離すと、張力をTとすると、最下端での運動方程式は、F=mα=T-mg=mv^2/l・・・(1)、エネルギー保存の法則で1/2mv^2=mgl(1-cosθ)ですね。従って、張力T=(3-2cosθ)mgになると思います。 ところが、周期を求める時は、張力Tを無視?してmg=mrω^2=mlω^2・・・(2)から、ωを求めてから、周期=2π/ωで求めます。(1)と(2)の違いはなんでしょうか。 もしも、(2)が成り立てば、(1)でT=0になってしまいそうな気がします。 よろしくお願いします。

  • 慣性モーメントの問題です。

    慣性モーメントの問題です。 平面で半径a、質量mの円柱を初角速度ωoで転がす。この時、円柱には床からFの摩擦力が加わっている 問題は(1)~(5)まで分けられていて、それまでの(1)~(4)の設問で以下の式を求めました。 並進運動の運動方程式は?→ mv'=-F  ・・・(1) 回転運動の運動方程式は?→ Iω'=aF  ・・・(2) 円柱の慣性モーメントは? → I=ma^2/2  ・・・(3) 滑らず転がる条件は?   → ω'a=v'    ・・・(4) (5)は、この4式を基にωを求めよ。というような問題です。 この計算過程で気づいたのですが、(3)を(2)に代入すると、ω'=2F/am、(1)より、v'=F/m の二式が得られますが、これでは(4)が成り立ちません。 これは、どの式が間違っているのでしょうか・・? 斜面を転がる問題や、円柱に力を加えて転がす問題など、例題を複数調べてみたのですが特別不自然に思えません。 ご回答よろしくお願いします。

  • 剛体振り子の運動方程式の導出

    剛体振り子の運動方程式 I(θの2回微分)=-Mghθ の導出はどうすれば良いのでしょうか?

  • 単振り子の問題

    単振り子の長さlで、垂直方向からθの角度で手を離すと、張力をTとすると、最下端での鉛直方向の運動方程式は、F=mα=T-mg=mv^2/l・・・(1)、水平方向の運動方程式は、mα=-mgsinθ・・・(2)ですね。垂直方向のαと水平方向のαは同じものなのでしょうか。これらを区別して書いている教科書は見当たりません。方向が90°違うので、区別すべきだと思うのですが。高校レベルです。よろしくお願いします。