• 締切済み
  • 困ってます

力学

質量mの質点の運動方程式を、接線(τ)方向と法線(γ)方向に分解すると mv'=Fτ m(v^2/ρ)=Fγ となるらしいのですが、これを用いて重力加速度gの地上の単振り子の運動方程式を導出するとどうなりますか? 後、ρっていう量は何を表しているのですか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数46
  • ありがとう数1

みんなの回答

  • 回答No.1

ヒントのみです。 (1) 糸が鉛直下方から角θだけ傾いた瞬間の,おもりが受ける力を図示してください。 (2) 力をおもりが運動する軌道(円)の接線方向と,法線方向(半径方向)に分解してください。 (3) ρは,回転半径(一般の軌道では曲率半径)をさしていますから,今の場合振り子の長さLです。 (4) v=Lθ' の関係から接線方向の運動方程式の座標変数をθに取り替えるのが普通です。半径方向の運動方程式は糸の張力を与える式になります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 物理の力学の問題です。

    物理の問題で分からない所があるので教えて下さい。 問, 天井から吊るした長さlの軽いひもの先端に、質量mの質点がとりつけられて振り子運動をしている。ひもの張力をT、振り子の振幅方向をx、重力方向上向きをy軸正、重力加速度をgとして以下の問いに答えよ。 なお、ひもが鉛直となっているときの質点の位置を原点とする。 (a)運動方程式のx方向成分、y方向成分を記せ (b)l>>xのとき√(lの二乗)-(xの二乗)≒l、y=0と近似できるものとして、質点の運動方程式がma=-cxの形となることを示せ(cはどのように表されるか?) ただし、a=(d二乗)x/d(t二乗)とする。 (c)x=x'cosωtはωがある条件を満足するとき(b)の運動方程式の解となる。これを確かめ、(xが解として正しいことを実際に式に代入して確認する)ωが満足するべき条件を示せ。 (d) (c)が解であるとき質点の時間tでの速度を求めよ (e) (c)が解であるとき質点の時間tでの運動エネルギーを計算せよ です。 力学がとても苦手なので困ってます。 教えてください! よろしくお願いします。

  • 力学

    1.質量mの質点を、原点から角度θ、速さVで投げ上げた。重力加速度をgとして、運動方程式を立て、与えられた初期条件のもとで解け 2.速度に比例した抵抗-mrvを受ける質量mの質点が、水平面を運動する。その従う運動方程式を立て、それが初速度Vで原点から投げられたという初期条件のもとで解け 3.質量mの物体が、壁に固定されたばねに速度Vで衝突し、逆向きに同じ速度で跳ね返されるときの運動方程式をたてて解け。ばねから受ける力はF=-kxで与えられる 4.原点から(-k1x,-k2y)の力を受けて水平面内を運動する質量mの質点の運動方程式を立てて解け。またそのその運動の軌跡はどうなるか求めよ 自分の解答 1.問題の意味がわかりません。初期条件がなにか   mg=Vsinθ? 2. 3.-mV+F=mV   F=-kx   -kx=2mV    4.

  • 力学の問題です。わからないので答えていただければと思います。

    力学の問題です。わからないので答えていただければと思います。 加藤くんは、 3000[m]地点についた後、地上に向かって飛び降りた。 加藤くんの質量は50.0[kg]、飛び降りた時の速度は0.0[m/s]、重力加速度は9.8[m/s^2] として考える。 ただし、人間は質点と考えて良い、空気抵抗は無視する 問題 1)運動方程式を書きなさい 2) 1)の運動方程式を解き、加藤くんの位置、速さの時間変化の式を示しなさい(グラフを書いていただけたらありがたいです) 3) 2)の式を利用し、10[s]後の加藤くんの速さを[km/h]で表しなさい。 また、その時の位置は地上から何[m]であるか。 1)はF=maでF=50×-9.8でF=-490Nと思ったんですけどもどうでしょうか 2)3)はわからないです

  • 力学初期の問題です。わからないので答えていただければと思います。

    力学初期の問題です。わからないので答えていただければと思います。 加藤くんは、スカイダイビングをするために飛行機に乗って上空へ向かった。 3000[m]地点についた後、パラシュートを背負って地上に向かって飛び降りた。 加藤くんの質量は50.0[kg]、飛び降りた時の速度は0.0[m/s]、重力加速度は9.8[m/s^2] として考える。 ただし、人間は質点と考えて良い、空気抵抗は無視する 問題 1)運動方程式を書きなさい 2) 1)の運動方程式を解き、加藤くんの位置、速さの時間変化の式を示しなさい(グラフを書いていただけたらありがたいです) 3) 2)の式を利用し、10[s]後の加藤くんの速さを[km/h]で表しなさい。 また、その時の位置は地上から何[m]であるか。

  • 力学:角運動量の問題

    物理の力学の問題です。テーマは角運動量です。 原点の周りを質量mの物体が運動している。質点には原点からの中心力f(r)rと、空気抵抗-kvが働いている。時刻t=0で質点は角運動量L0をもっていたとして、その後の時刻tにおける角運動量L(t)を求めよ。 注:rとvはベクトルである。ただし、f(r)のrはスカラー。 まず、運動方程式をどう立てればいいのかわかりません。 r方向とv方向に分解するのかしないのか・・・ それと、最後の答えでtが出てくる気がしない。 L=r×pのとき、mr''=Fから L'=r×Fは導けました。

  • 振り子に働く減衰力について

    今、長さlの棒の先に質量mの重りをつけた振り子がある(θは十分小さいとする)、という条件の下、摩擦力が存在しない場合のθに関する運動方程式(θ''+g/l・θ=0)とそれから導出される角周波数ω(ω=√g/l)は導出できたのですが、次の問題が分かりません。 (1)重りの運動速度vと質量mに比例する減衰力F=-γmvが加わった場合のθに関する運動方程式は? (2)減衰力γが小さいとして最大振幅θmaxが初期値の半分になる時間は? という問題です。分かる方がいましたら教えていただけないでしょうか?よろしくお願いします。

  • 円軌道上のエネルギー保存則の導出方法における疑問点

    長さLの軽い糸の一端を定点Oに固定し、他端に質量m の小さな錘を結びつける。mが最下点にある状態で水平に初速v(0)を与える。鉛直線と糸の角度をθ、糸の張力をT,重力加速度の大きさをgとすれば、錘mの運動方程式は、(初期条件θ=0でv=v(o))    向心成分: mv^2/L=T-mgcosθ …(1)      接線成分: mdv/dt=-mgsinθ …(2) ここから、エネルギーの保存則   1/2mv(0)^2=1/2mv^2+mgL(1-cosθ)…(3) を導出するとき、「運動方程式の向心成分(1)は進行方 に垂直な力だから、仕事をせずエネルギー保存則に無関係だから、接線成分(2)の両辺にv=L(dθ/dt)をかけて」 1/2mv^2=mgLcosθ+C (Cは積分定数)   が得られて、初期条件よりエネルギー保存(3) が導かれる。(ここまではわかります) ここからが、疑問です。  地球(質量M)の回りを人工衛星(質量m)が円軌道を描くときのエネルギー保存則は、(Gは万有引力定数)     m/2v^2-GMm/r=E(一定)…(6) です。      運動方程式は、    向心成分: mv^2/L=-GMm/r^2 …(4)      接線成分: mdv/dt=0      …(5) 「運動方程式の向心成分(4)は進行方向 に垂直な力だから、仕事をせずエネルギー保存則に無関係だから、接線成分(5)の両辺にv=L(dθ/dt)をかけて」導けるはずなのに((3)の導出と同じ考え方だから) しかし、この場合、(5)の右辺が0なので  どうしても、直接(6)を導けません。 ご指導を宜しくお願いします。  

  • 物理の問題が分かりません><助けてください。

    以下の文章中の(1)~(29)に適切な語句または式を入れよ。というものです。 長さl の糸の先に質量m の質点が付けられた単振り子がある。ある時刻t において鉛直線と糸のなす角がθ(t)で、速度がv(t)とする。角速度ωは、ω(t)=(1:)で与えられる。θが見込む円弧の長さをu とすれば、θの定義から(2:)なので、速度v(t)=(3:)となる。この質点に働く力は、糸の(4:)F と(5:)である。これらの力の(6:)を質点の(7:) 方向成分fθと(8:) 方向成分fr に分解すると、fθ=(9:)となり、この方向の運動方程式は(10:)と表せる。またfr=(11:)なので、この方向の運動方程式は(12:)となる。単振り子の振幅が小さいときは、θについて(13:)が成り立つので、(7)方向の運動方程式は(14:)となる。この方程式はω=(15:)とおけば、(16:)となり、これは(17:)の運動方程式である。従って、解θ(t)=(18:)と重ねあわせの形で書けるが、(19:)としてt=0 に角度θ0 の位置から静かに手を離した場合には、θ(t)=(20:)と表せる。振動の周期T は、T=(21:)=(22:)である。このように周期が振幅によらず一定であることを(23:)という。また、この質点に働く(4)F を求めるには、θ<<1 のときcosθ=(24:)と近似できるから、θ(t)=(20)を用いて(12)式から、F=(25:)=(26:)となる。t=0 では、F=(27:)となる。また、θ=0 のときのt0 は、(28:)であり、このときF=(29:)となる。 僕の回答は(1)はθ/tかdθ/dtと思います。 (2)はu=lθだと思います。(3)はわかりません。 (4)張力(5)重力(6)合力(7)はわかりません。 (8)半径(9)mgsinθ(10)m * d^2θ/dt^2 = -mgsinθ(11)~(16)まで分かりません。(17)単振動 (18)~(29)まで分かりません>< 僕の回答があっているかと、分からない問題1つでも分かる方がいらっしゃればどうか回答よろしくおねがいします。

  • 剛体で支持された質点の振り子

    振り子に関してですが、、 「質点 m の小さな物体が長さ R の軽くて細い剛体棒の先端に取り付けられている振り子がある。この振り子の運動方程式は、周方向の力の平衡、および剛体棒と鉛直軸のなす振れ角 θ と質点の収束 v の関係から dθ / dt = (1 / R) v dv / dt = -g sinθ と書ける。ここで、 v = φ √(R・g) t = τ √ (R / g) とおいて、上の運動方程式を変数 φ 、変数 θ を従属変数、τ を独立変数とする方程式に書き直せ。ただし重力加速度を g とする。」 という問題があるのですが、なかなかうまく φ と θ の式にすることができませんので、よろしくお願いします・・・・。 また、このような条件の場合には sinθ ≒ θ として計算してもよかったでしょうか?

  • 力学の問題です。

    半径rの摩擦のない滑らかな球面上に置かれた質量mの質点を考える。 球は固定されて動かないものとし、質点が球の頂上から接線方向に速さv0で 滑り落ちるものとする。 質点が鉛直方向から角度θだけ傾いた球面上にあるときの質点の速さvを求めよ。 という問題なのですが、 摩擦が働かないからエネルギー保存より、 (1/2)mv0^2+mgr(1-cosθ)=(1/2)mv^2 で解いていいのでしょうか? こんな初歩的なことも不安です。 分かる方教えてください。 宜しくお願いします。