• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:ベルンシュタインの定理がよくわかりません…)

ベルンシュタインの定理とその証明について

pikarucheの回答

  • pikaruche
  • ベストアンサー率35% (6/17)
回答No.6

No5 には語弊や脱字がありましたね。書きなおしです: 追加ですが、無限集合Aについて、濃度|A|は「実数」を現すのではないことがポイントです。 (実、がぬけていました) もし濃度が必ず実数なら、もちろん、|A|≦|B|かつ|B|≦|A|なら|A|=|B|ですが、、、。 この実数の性質が拡張できるかを、確かめる必要があります。 なお、濃度で示されるのは、集合同士が順序付けられた位置や大きさの程度、くらいに理解しておけばよいと思います(本格的な基礎論はほとんどの数学分野で必要ないです)。

関連するQ&A

  • Q.Xを自然数全体の集合Nの部分集合とするとき、|X|>アレフゼロを証

    Q.Xを自然数全体の集合Nの部分集合とするとき、|X|>アレフゼロを証明せよ。 以下、ネットでのどなたかの回答を参考に、私なりにテキストを読み返すなどして解釈して、作成しました。 テスト問題としての解答として、 「修正および補足」などをお願いします。 A. |X|=|N|と仮定すると、NからXへの全単射fが存在する。 ∀n∈N ⇒ f(n)=M, ∃M∈X ∀M∈X ⇒ f(n)=M, ∃n∈N つまり 1 ←→ M1 2 ←→ M2 ・ ・ n ←→ Mn ・ ・ このとき、左右の対応関係について、属するか属さないかを分類でき、 N∈Mn または n?Mnとなる。 次に集合M'を以下のように定義する。 (1) n∈Mnのときnを要素としない。 (2) n?Mnのときnを要素とする。 この集合は一意に決まり、また自然数だけを要素に持つ集合となり、明らかに自然数の部分集合を意味する。 つまりM'∈Xであるが、このM'は定義により、上の対応関係からは外れている。 これはNとXとが全単射できたという仮定に矛盾する。 |X|≠アレフゼロ また、写像g:N→Xをgn={n}とすると、これは単射であるから |N|=アレフゼロ≦|X| 以上より、アレフゼロ<|X|

  • 連続単射

    いかにも大学教養レベルの位相の問題なんですが、少し混乱してしまっています。どなたかご教示いただけたらと思います。 R^n→R^mへの連続単射fがあったとします。疑問点は三つです。 (i)m≧nか?像f(R^n)に制限すれば連続全単射になります。したがって局所コンパクトからハウスドルフへの連続全単射が存在することになって、局所同相ですが、m<nならそれは位相的にあり得ないように思います。この論証は正しいですか。 (ii)上のことが正しいとして、m≧nを仮定します。一般にfは閉写像ではないと思います。たとえばm=n=1ならf(x)=e^xとおけば、閉集合Rを開集合(0,∞)にうつすからです。一般のm,nではこれも少し自信がありません。閉写像にならない反例は常にあげられるでしょうか。 (iii)またm>nなら単純な埋め込みf(x)→(x,0)(残りの成分を0とおく)、を考えれば、開写像でないのは明らかですが、ではn=mのときはどうか。これがいちばん知りたいことですが、たとえばn=m=1のとき、R上の連続単射を考えていることになって、fは狭義単調。したがって逆もまたそうであって、像に制限すれば同相です。特にR上の単調関数は開区間を開区間にうつします。問題はn=m>1のときで、これもやはり開写像になるのでしょうか。局所同相がきちんと言えると示せなくもないような気がするのですが、困っています。

  • 線形代数の写像の問題です

    教科書の問題ですが、 「集合A,Bがそれぞれm,n個の元からなるとする。 1)AからBへの写像の個数を求めよ。 2)AからBへの単射の個数を求めよ。 3)AからBへの全単射の個数を求めよ。」 質問です。f:A→Bが写像なので、m個だと思いましたが、1)の答えはn^m、2)の答えはm≦nの時、nPm、3)の答えはm=nの時m!となっています。 どのように理解したらよいのか分かりません。 よろしくお願いします。

  • 自身への写像が全単射となることの証明

    (1) 写像f:A→Aとする。Aが有限集合であるとき、写像fが単射ならばfは全単射である事を示せ。 (2) Aが無限集合であるとき、fは全単射か。そうであれば証明せよ。そうでないなら反例を示せ。 上の問題の(1)は以下のように考えました。 f(A) は A の部分集合。 f(A)≠A と仮定すると、A とその真部分集合との間に全単射が存在したことになる。これは、無限集合の定義であるため、有限集合は全単射である。 このような証明で十分なのでしょうか?また、上のように考えたのでAが無限集合であるときはfは全単射ではないと思うのですが、反例が思いつきません。 わかる人がいれば教えてください。よろしくお願いします。

  • 写像の問題をお教え下さい。

    いくら考えても全くわかりません。 お教えいただければ大変嬉しいです。お願いします。 問題 Aをm×n行列とし、行列とベクトルの積で与えられる線形写像A:R^n →R^m:x ↦ Axを考える。 以下の問いに答えよ。 (1) 写像Aが単射であるならば、n ≤ mであることを示せ。 (2) n ≤ mであって、写像Aが単射でない例をあげよ。 (3) 写像Aが単射であるならば、rankA = nであることが必要十分であることを示せ。 (4) 写像Aが全射であるならば、n ≥ mであることを示せ。 (5) n ≥ mであって、写像Aが全射でない例をあげよ。 (6) 写像Aが全射であるならば、rankA = mであることが必要十分であることを示せ。 (7) もしn = mならば、写像Aが全単射であることとAが正則であることが必要十分であることを示せ。

  • 写像の証明問題です。よろしくお願いします。

    写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 写像の問題です。よろしくお願いします。

    (1)2つの写像f:X→Y、g:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 偶置換、奇置換

    群について勉強していて、わからないことがあります。 nを自然数として、X_n={1,2,…,n}、 S_n={σ:X_n→X_n|σは全単射} とおく。 A_nを偶置換全体からなるS_nの部分群とする。ρ∊S_nは奇置換であるとし、 ρA_n={ρσ∊S_n|σ∊S_n} とおく。 この時、「φ(σ)=ρσ(σ∊A_n)で定まる写像φ:A_n→ρA_nが全単射である。」 とあるのですが、ここの部分がよくわかりません。 単射であることは以下のように証明してみました。 「σ、σ’∊A_nとして、ρσ=ρσ’ならば、両辺にρ^(-1)を左から作用させるとσ=σ’」 全射についてうまく証明することができません。 どのようにすればよいのか教えていただけると助かります。

  • 逆写像の条件について

    集合Uから集合Vへの写像fが全単射なら 逆写像f^{-1}が存在し、f^{-1}は全域写像になりますが、 f^{-1}の逆対応はfなので、f^{-1}は全単射で、 fは全域写像になるのでしょうか? また、集合Uから集合Vへの部分写像fが逆写像をとる条件を単射とした場合は 合成写像f◦f^{-1}がUの恒等写像にならないですよね?

  • 濃度に関するかなり初歩的な質問です

    集合位相入門(松坂和夫)のp69に次のような定理と証明が書いてありました。 [定理] 濃度m,nについて、 m≦n,n≦mならばm=n [証明] CardA=m,Card=nでなる集合AとBをとれば、 m≦nであるから("≦"の定義より)、AからBへの単射が存在し、 n≦mよりBからAへの単射が存在する。よって、ベルンシュタインの定理より、AとBは対等(A~B)である。ゆえにm=nである。 また、 濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろう。 みたいな記述もあったのですが、 それなら(p56の(6.2)にもあるように) 同値類n、mの代表元A、Bをとってきて、 それらが対等関係ならば同値類も等しいから、m=nとできると思いました。 [質問1]証明中の"ゆえにm=n"というのはこうゆうことでしょうか? [質問2]"同値類"という言葉は、"類別"という用語と違って、"集合全体の集まり"を集合と見るか見ないかにかかわらず使用できる言葉ですよね? どなたか詳しい方がいらっしゃいましたら回答よろしくお願いいたしますm(_ _)m