高校数学の数列の和の計算

このQ&Aのポイント
  • 高校数学の数列の和の計算問題を解説します。
  • 解説では、数列の和を計算する方法について詳しく説明します。
  • 具体的な数列の和の計算問題を解きながら、変形の手順や公式の使い方を解説します。
回答を見る
  • ベストアンサー

高校数学の数列の和の計算 4-7

次の和を計算せよ (1)Σ[k=1→n]k・nCk (2)Σ[k=1→n]k^2・nCk 解説はK・nCk=n・n-1Ck-1となっていてこの式の意味が左辺がn人からk人を選び、そのk人から1人のリーダーを選ぶという場合の数で右辺はn人から1人のリーダーを選んでからk人の組をつくるという場合の数で一致するとあるのですが、左辺は分かりますが右辺の意味ですが1人のリーダを選んだ後n-1任からk組作るのだったらn・n-1Ckじゃないんですか? (2)は(1)のK・nCk=n・n-1Ck-1を使って Σ[k=1→n]k^2・nCk=nΣ[k=1→n]k・n-1Ck-1(1)                                                =nΣ[k=1→n]{(k-1)・n-1Ck-1}+n-1Ck-1}(2) =n[Σ[k=2→n]{(k-1)・n-1Ck-1}+Σ[k=1→n]n-1Ck-1](3) =n[(n-1)Σ[k=2→n]{(n-2)・n-1Ck-2}+Σ[k=1→n]n-1Ck-1](4) =n(n-1)・2^(n-2)+n・2^(n-1)(5) =n(n+1)・2^(n-2)(6)とあるのですが(1)から(2)、(2)から(3)、(3)から(4)の変形をどうやったのか分かりません

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8019/17138)
回答No.2

(1) > 1人のリーダを選んだ後n-1任からk組作るのだったらn・n-1Ckじゃないんですか? 1人を選んだら、残りのn-1人からk-1人を選ぶんだろう。 (2) (1)から(2)の変形はkをk-1と1に分解する (2)から(3)の変形はΣを分解した上で、k=1のときに0になるから省略する (3)から(4)の変形は「K・nCk=n・n-1Ck-1を使って」と同じこと。

arutemawepon
質問者

お礼

御返答有難うございます

arutemawepon
質問者

補足

>(2)から(3)の変形はΣを分解した上で、k=1のときに0になるから >省略する 分解したけどnΣ[k=1→n]{(k-1)・n-1Ck-1}+n-1Ck-1}でk=1を代入したらnΣ[k=1→n]{(k-1)・n-1Ck-1}は0だけど nΣ[k=1→n]n-1Ck-1はn-1C0になるんですが、n-1C0って何になるんですか?0ですか? >(3)から(4)の変形は「K・nCk=n・n-1Ck-1を使って」と同じこ >と。 (3)はn[Σ[k=2→n]{(k-1)・n-1Ck-1}+Σ[k=1→n]n-1Ck-1]になっていて(k-1)・n-1Ck-1になっているのですが、 K・nCk=n・n-1Ck-1はどうやって使うんですか?

その他の回答 (1)

回答No.1

>K・nCk=n・n-1Ck-1 1人選んだら残りはk―1人選ぶことになりますよね? 〉(2) 地道に式変形して下さい。 これができないようなら中ー用の問題集に 切替ましょう。マジで。 今の問題集はあなたにとって時間のむだです。 学力と問題集のレベルが違いすぎます。 4~5年分のギャップを埋める覚悟が必要です。

arutemawepon
質問者

お礼

御返答有難うございます

arutemawepon
質問者

補足

でもこれ数列だし高校数学ですよ?何で中学なんですか きちんと説明してくれたら納得出来ると思うので、どうか宜しくお願いします

関連するQ&A

  • 高校数学の数列の和の計算 4-7再質問

    高校数学の数列の和の計算 4-7 次の和を計算せよ (1)Σ[k=1→n]k・nCk (2)Σ[k=1→n]k^2・nCk 解説は(1)はK・nCk=n・n-1Ck-1となっていてこの式の意味が 左辺の意味ですがn人からk人を選んでそのk人から一人のリーダーを選ぶ場合の数で右辺はリーダーを一人決めて、残りのn-1人からk-1人を選ぶという事ですか?良く分かりません (2)は(1)のK・nCk=n・n-1Ck-1を使って Σ[k=1→n]k^2・nCk=nΣ[k=1→n]k・n-1Ck-1(1)                                                =nΣ[k=1→n]{(k-1)・n-1Ck-1}+n-1Ck-1}(2)                      =n[Σ[k=2→n]{(k-1)・n-1Ck-1}+Σ[k=1→n]n-1Ck-1](3)                      =n[(n-1)Σ[k=2→n]{(n-2)・n-1Ck-2}+Σ[k=1→n]n-1Ck-1](4)                      =n(n-1)・2^(n-2)+n・2^(n-1)(5)                      =n(n+1)・2^(n-2)(6) とあるのですが(3)から(4)の変形をどうやったのか分かりません

  • 数列の問題で

    独学で数列を勉強しています。 【1,2,3・・・・・・,n の中で互いに隣接しない相異なる2数の積の和を求めよ。】 という問題で、求める和を、 (1×3+1×4+・・・1×n )+ (2×4+2×5+・・・2×n )+・・・{(n-2)×n } とグルーピングするそうです。ここまでは分かります。 次に、 【 k番目は、k{(k+2)+(k+3)+......+n }= k・(n-k-1)(n+k+2)/2  注:{ }の内は等差数列  】 という部分がありますが、さっぱり理解できません。 なぜ、左辺が右辺になるのでしょうか?

  • 数学的帰納法について

    (1+2+・・・+n)^2 = 1^3 + 2^3 + ・・・ + n^3 を数学的帰納法で証明するのですが、 n=1のとき、 1=1で左辺=右辺。 n=kで成り立つとしたとき、  n=k+1のとき、左辺 - (1+2+・・・+k)^2 = k^3 = (k+1)^3 を求めてみようとしたのですが、 式変形がうまくいきません。 どうかご教授願います。

  • Σ計算と数列の和

    n Σk(k+1)(k+2)の和は(1/4)n^2(n+1)^2+3×(1/6)n(n+1)(2n+1)+2×(1/2)n(n+1)から1/4n(n+1)(n+2)(n+3)と という答えになるようですが、どうしたらこうやってくくることができるのでしょうか??その計算過程を教えてください

  • 数列について

    l Σ(k=n+1~m) sin k^2/k^2 l≦Σ(k=n+1~m) 1/k^2 を示さないといけないのですが、左辺の変形がうまくいかずに右辺へ辿り着きません。。 どなたか、教えていただけませんか。 よろしくお願いします。

  • 数列の和の公式 なぜそうなるの?

    数列の和の公式で n Σk^3=(n/2×(n+1))^2 となっていますが、という事は、右辺を見ると k=1 n Σk の公式の2乗と一致します。なぜこのような事になるのでしょうか? k=1 お尋ねしたいのは、1^3 + 2^3 + 3^3 +…+n^3 = (1+2+3+…+n)^2 という等式の証明方法です。高校2年の数学を勉強している者なので、そのレベルの知識範囲内で説明を頂ければ助かります。よろしくお願いいたします。

  • 数列の和を教えて下さい

    以下の数列の和を教えて下さい。 n^kをnのk乗とした場合 数列   2^1、2^3、2^5、…、2^(2k-1) (k:自然数) どうしてもわかりません。おねがいいたします。

  • 数学的帰納法

    問い nが自然数のとき、次の等式が成り立つことを、数学的帰納法で証明せよ。 1^3+2^3+3^3+4^3+・・・n^3=(1/4)n^2(n+1)^2 n=1のときが 左辺=1^3=1  右辺=1/4*1*2^2で n=k or n=k+1のときは 左辺=(k+1)k^3 右辺=(1/4)k^3(k)(k+1)^2 これじゃ回答にならんですよね。 n=k or n=k+1のときを証明する時になにを加えればよいかわかりません。 ヒントだけでも教えてください。

  • 数学的帰納法

    今高校で数学的帰納法をやっているんですが、模範解答を見ても解き方がわからない問題があります。 お力貸してください。 nを自然数とするとき、数学的帰納法によって次の等式を証明せよ。   (n+1)(n+2)(n+3)……(2n)=2のn乗×1×3×5×……×(2n-1)  模範解答・・・ [1]n=1のとき、左辺=1+1=2、右辺=2 より成り立つ。          [2]n=kのとき与式が成り立つと仮定すると、    (k+1)(k+2)(k+3)……(k+k)=2のn乗×1×3×5×……×(2k-1)  ------------------------------------------------------------   ここまでは分かります。以下がわかりません。  この両辺に〔(k+1)+k〕〔(K+1)+(K+1)〕を乗じると、(なんでここでこれを乗じるんですか??) 左辺=(K+1)(K+2)(K+3)…(K+K)〔(K+1)+k〕〔(K+1)+(K+1)〕    (以下こんな感じです) 右辺=・・・・・ k+1≠0より左辺と右辺を(K+1)で割ると、これはn=k+1のときにも与式が成り立つことを示している  [1][2]よりすべての自然数nに対し与式は成り立つ。  途中からがよくわかりません。分かる方いらしたら教えてください。

  • 数学的帰納法について

    1・3+2・4+3・5+・・・+n(n+2)=(1/6)n(n+1)(2n+7) これがすべての自然数nに対して成り立つことを示したいのですが。 (I)まずn=1 は 左辺=1・3=3 右辺=3 となり等式は成立する。 (II)ここで、n=kのとき等式が成り立つと仮定すると  とかいて、はじめのnにn=kを代入しますよね。 その後、模範解答を見ると「(k+1)(k+3)を加えると・・・」 としているのですが (k+1)(K+3)を加えている理由としては、 n=kを成立すると仮定して、n=k+1が成り立つ⇒n=kも当然なりたつ⇒すべての自然数nについて与式は成り立つ。 というものなんでしょうか? ということは、例えば右辺が 2n(n+1)などとしたら、 はじめにn=1で成り立つことを示した後、 n=kを代入し 2k(k+1)を成り立つと仮定し、 n=k+1で 2(k+1){(k+1)+1}・・・☆ となるようにうまく右辺を変形させてあげて、 nのところにk+1が代入されている形になっているので、n=k+1のときに成り立つことが示せて、だからn=kのときも成り立ち、すべての自然数nに対して等式が成立する。 という風に考えればいいのでしょうか? つまり、右辺が☆の形でn=k+1で元の式のnにk+1を代入した形を示せれば、左辺はともかく右辺だけでn=k+1が成り立つことを示せているんですよね? つまり問題に戻ると、左辺は1・3+2・4・・・・+(k+1)(k+3)= とでも適当に書いておいて実質無視ということでしょうか? 理系の受験生なのですが、帰納法すらまともに書けないのか・・・ と馬鹿にされそうですが・・・。 質問というか確認のようになってしまいましたが、帰納法というのはどういうものなのか?という理解すらままならない状況だったので質問させていただきました。あと5ヶ月でまともな解答がかけるようになるために間に合うかはわかりませんが、地道に努力します。回答よろしくおねがいします。