複素数の三角不等式|z+w| <= |z|+|w|の証明について質問で
複素数の三角不等式|z+w| <= |z|+|w|の証明について質問です。
本に
シュヴァルツの不等式
(xu + yv)^2 <= (x^2 + y^2)(u^2 + v^2)
で、z = x+yi、w = u+viとすれば、
|Re(z w~)| ←wだけ共役複素数
= |Re{(x+yi)(u-vi)}|
= |xu + yv|
<= √(x^2 + y^2)√(u^2 + v^2)
= |z||w|
と書くことができます。
…とあるのですが、
まず、そもそも何故、虚数Imのところは計算せずに
実数Reの部分だけを計算しているのか、意図が分かりません。
それと、|Re(z w~)|は何故いきなりwが共役複素数になってるんですか?
これは、|z|^2 = |z~|^2 = z z~ という性質と関係がありますか?
シュヴァルツの不等式が(xu + yv)^2と二乗していたので、こっちでも二乗した、ということですか?
そして、その後はRe z = (z+z~)/2を適用して|xu + yv|になるのは分かるんですけど、
<= √(x^2 + y^2)√(u^2 + v^2)
になった経緯が分かりません。
(xu + yv)^2 <= (x^2 + y^2)(u^2 + v^2) が二乗だったので
|xu + yv| <= √(x^2 + y^2)√(u^2 + v^2) は二乗をとって二乗根にした、ということですか?
三角不等式自体は別の教科書の複素数平面上に書かれた図で理解できているつもりです。
||z_1| - |z_2|| <= |z_1 + z_2| <= |z_1| + |z_2|
等号はO, OP1↑, OP2↑が一直線上にあり、
右の等号は、OP1↑, OP2↑が同じ向きのときであり、
左の等号は、OP1↑, OP2↑が反対向きのときである。
||z_1| - |z_2|| <= |z_1 - z_2| <= |z_1| + |z_2|
等号はO, OP1↑, OP2↑が一直線上にあり、
右の等号は、OP1↑, OP2↑が反対向きのときであり、
左の等号は、OP1↑, OP2↑が同じ向きのときである。
…というような図です。
いろいろ質問してすみません。どうか教えてください。お願いします。