• ベストアンサー

等式の証明

(1)a+b+c+d=0のとき、次の等式が成り立つことを証明せよ。  a³+b³+c³+d³=3(a+d)(b+d)(c+d) (2)1/x+1/y+1/z=1/x+y+.zのとき、x+y、y+z、z+xのうち少なくとも一つは0に等しいことを証明せよ。 (3)x/2y+z=y/2z+x=z/2x+yのとき、この式の値と、その時の実数x、y、zの条件を求めよ。 という三題です。途中式までお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.3

先ほどの解は 方程式の考え方を使ったが、式変形だけでやるなら。 (1) a³+b³+c³-3abc=(a+b+c)*(a^2+b^2+c^2-ab-bc-ca) a+b+c=-d、ab+bc+ca=m、abc=n と置くと、a³+b³+c³=-d(d^2-3m)+3n つまり、左辺=a³+b³+c³+d³=3(n+md)。 右辺=3(a+d)(b+d)(c+d)=3{d^3+(a+b+c)d^2+(ab+bc+ca)d+abc}=3(n+md)。 (2) 条件式の分母を払うと、(x+y+z)*(xy+yz+zx)=xyz x+y+z=aとすると、x+y=a-z、y+z=a-x、z+x=aーy。 (x+y)*(y+z)*(z+x)=(a-z)*(a-x)*(a-y)=a^3ー(x+y+z)a^2+(xy+yz+zx)a-xyz=(x+y+z)*(xy+yz+zx)-xyz=0 よつて、(x+y)*(y+z)*(z+x)=0だから題意の通り。

greenreaf
質問者

お礼

ありがとうございました。 丁寧に教えて下さり、助かりました。

その他の回答 (2)

回答No.2

(1) a+b+c=-d、ab+bc+ca=m、abc=n と置くと、a、b、cは t^3+dt^2+mt-n=0の2つの解。 つまり、t^3=-dt^2-mt+n た゛から、a^3=-da^2-ma+n これは bとcについても同じ。 よって、a³+b³+c³+d³=d³+(a³+b³+c³)=d³+3nーd(a^2+b^2+c^2)ーm(a+b+c)=3(n+md)。 3(a+d)(b+d)(c+d)=3{d^3+(a+b+c)d^2+(ab+bc+ca)d+abc}=3(n+md)。 (2) 条件式の分母を払うと、(x+y+z)*(xy+yz+zx)=xyz x+y+z=a、xy+yz+zx=b、xyz=c とすると、ab=c。 x、y、zは t^3-at^2+bt-c=t^3-at^2+bt-ab=(t-a)*(t^2+b)=0の3解。 t-a=0だから、例えば、x=aとすると、x+y+z=aよりy+z=0. 従って、題意の通りに成立する。 (3)  どこまで、分母なのか分からないが、2y+z、2z+x、2x+yが分母として話を進める。 x/(2y+z)=y/(2z+x)=z/(2x+y)=kとすると、x=k(2y+z)、y=k(2z+x)、z=k(2x+y)。 これらを足すと、x+y+z=3k(x+y+z)になるから、x+y+z=0のときと、x+y+z≠0の時の2つの場合を考える 加比の理を知ってると、x/(2y+z)=y/(2z+x)=z/(2x+y)=(x+y+z)/3(x+y+z)となるから、x+y+z=0のときと、x+y+z≠0の時の2つの場合を考える事になり、全く同じになるんだが。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

(1) 条件を突っ込んでベタに計算する. (2), (3) こ~いうときはだいたい = k とおいてゴリゴリ計算.

greenreaf
質問者

お礼

ありがとうございました。 でも・・・ まだ、よくわからない・・・・

関連するQ&A

  • 数学の不等式の証明

    数学の不等式の証明に関する質問です。 (問題) 次の不等式を証明せよ。ただし、文字はすべて実数を表す。 (1)√a^2+b^2+c^2*√x^2+y^2+z^2≧|ax+by+cz| (2)10(2a^2+3b^2+5c^2)≧(2a+3b+5c)^2 (1)は式を2乗し、差をとって変形して証明できました。 (2)は(1)の式を利用することまでは分かるのですが、どうやって式を利用して証明すればよいか分かりません。 (1)の2乗した式にa=√2a,b=√3b,c=√5c,x=√2,y=√3,z=√5を代入すると、(2)と等しくなります。 けどこれではちゃんとした解答と言えるのかがわかりません。 証明の切り口を教えていただけないでしょうか?

  • 【不等式の証明】

    (1)x=y=zのとき、不等式 xy^2-x^2y+yz^2-y^2z+zx^2-z^2x>0 が成り立つことの証明 (2)1<a<b<cのとき、不等式 loga(c/b)+logb(a/c)+logc(b/a)>0 が成り立つことの証明 答えがなくて困ってます(><) 解ける方がいらっしゃいましたら、 解説お願いします。

  • 不等式の証明

    例によって、近所の高校生からの質問が発端。先ず、問題を書きます。 実数c (0<c<1) と実数:x、y、a、bの間に |x-a|<c、|y-b|<c という関係があるとき、|xy-ab|<c*(c+|a|+|b|)を証明せよ。 この問題は、段階式設問になっており、(1)で三角不等式(つまり、|x+y|≦|x|+|y|)を証明させた後に この設問になっているから、それに乗れば この問題自体は簡単。 しかし、三角不等式が与えてられてなかったら、どのように解くか? aとbで場合わけをするのは面倒そうだし、という事でなにか良い方法がないだろうか? 検討をお願いします。

  • 不等式の証明

    実数a>0,b>0,c>0のとき、、 a/√(a^2+8bc)+b/√(b^2+8ac)+c/√(c^2+8ab)>=1 を示せ。 1/√(1+8*b/a*c/a)+1/√(1+8*a/b*c/b)+1/√(1+8*a/c*b/c)>=1 を示すことになる。 b/a=x,c/b=y,a/c=zとおくと、xyz=1。 1/√(1+8x/z)+1/√(1+8y/x)+1/√(1+8z/y)>=1 このあと、z=1/xyとして、zを消去して、不等式の左辺のxを固定して、yで微分して、 最小値をもとめ、次にxで微分して、最小値を求める。という流れが頭の中では考えられるのですが 計算を始めると、分けが分からなくなります。 この種の3つの文字がある場合の不等式は、良いアイデアが思い浮かばないと証明できないことが 多いと思いますが、1文字消去で、固定して微分するという方法は計算が進めば、どんな場合でも使えると思います。 この問題の場合、この方針でいったい解けるのでしょうか。それだけでもわかれば、力が沸きもう一度やってみようという気持ちになります。よろしくお願いします。

  • 不等式の証明

    a,b,cが実数のとき、 |ab(a^2-b^2)+bc(b^2-c^2)+ca(c^2-a^2)|=<M(a~2+b^2+c^2)^2を満たす最小のMの 値を求めよ。 |ab(a^2-b^2)+bc(b^2-c^2)+ca(c^2-a^2)|/(a^2+b^2+c^2)^2 の最大値を求めれば よいのかと思いました。 a>=b>=cで考える。 分母・分子をa^4で割る。 b/a=x,c/a=yとおくと |(1-x)(1-y)(x-y)(x+y+1)|/(1+x^2+y^2)^2 この最大値を考えようとしましたが、挫折しました。 よろしくお願いします。 一般的に変数が2個のときは、不等式の証明はそう難しくないと思うのですが、 3個になったときは、どのように考えていくといいのか・・・。いつも行き当たりばったり の証明で、先を見通した証明ができず、挫折してしまいます。

  • 不等式の証明

    (1)x≧0、y≧0のとき、つねに不等式 √(x+y)+√y≧√(x+ay) が成り立つような正の定数aの最大値を求めよ (2)(1)aを用いて、x≧0、y≧0、z≧0のとき常に不等式 √(x+y+z)+√(y+z)+√z≧√(x+ay+bz) が成り立つような正の定数bの最大値を求めよ これらの問題なのですが、 学校では不等式の証明は「2乗して引いて証明」と教わったのですが2乗してもうまくできません。0以上という条件から相加相乗というのを使うのかと思いましたが・・・でした。 教えていただければ助かります 宜しくお願いします

  • 不等式の証明

    a,b,c,dが実数の時、次の不等式(絶対値、ルート、二乗付の式)が成立する らしいのですが、証明方法が判りません、お教え下さい。  |√(a^2 + b^2) - √(c^2 + d^2)| =< |a-c| +|b-d| 

  • 高校数学 不等式など

    高校から課題が出たのですが、解説がなかったため解説をお願いします。 途中式などを細かく書いていただけると、ありがたいです。 問題数が少し多いのですが、宜しくお願いします。 降べき、昇べきの順に並び変える。 6x^2-4y^2-2xy-3x+4y+1 既約分数か多項式にする。 a^2-(b-c)^2/(a+b)^2-c^2 次の不等式を満たすxの値の範囲 -1<1-(x-1)/2<= 1/3 2(x-3)+5<5x+6<= (3x+4)/3 次の連立方程式を解く。 x+y=4 y+z=8 z+x=6 次の不等式を満たす実数x,yの値を求める。 (1+i)(x-yi)=2+i iの二乗は-1です。 次の二次方程式が重解をもつように、実数kの値を定める。 また、そのときの重解を求める。 k(x+1)(x-2)=x^2 見難いですが、宜しくお願いします。 一応、新高一です。 もしかしたら、二年の範囲もあるかもです。

  • 等式の証明

    0でない実数a、b、x、yが、ax=yかつby=xを満たしている時、次の等式が成り立つことを示せ。 {x/(a+1)}+{y/(b+1)}=x^2+y^2/x+y という問題です。(a+1)x=(b+1)yが成立するというのを証明してみた所で、止まってしまいました。 この後、どのように証明したら良いのか、教えてください。

  • 不等式の問題

    正の実数a,b,cについて、 3/2<{(4a+b)/(a+4b)}+{(4b+c)/(b+4c)}+{(4c+a)/(c+4a)}<9 が成り立つことを示せ。 次のように考えましたが、不等式を示せません。 アドバイスをよろしくお願いします。 0<a=<b=<cとしても一般性は失わない。 真ん中の3つの式をそれぞれ分母、分子をbで割ると、 {(4a/b+1)/(a/b+4)}+{(4+c/b)/(1+4c/b)}+{(4c/b+a/b)/(c/b+4a/b)}・・・(1) また、0<a/b=<1=<c/b・・・(2) (1)の(4a/b+1)/(a/b+4)で、a/bをxとおくと、(4x+1)/(x+4)となり、0<x=<1のとき、(4x+1)/(x+4)=<1 次に(1)の)(4+c/b)/(1+4c/b)で、c/bをyとおくと、(y+4)/(4y+1)となり、y>=1のとき、(y+4)/(4y+1)=<1 (1)の(4c/b+a/b)/(c/b+4a/b)で、c/bをzとおくと、(4z+x)(z+4x)となり、z>=1のとき、0<x=<1の値のとき (4z+x)(z+4x)<4となり、(1)<1+1+4=6<9となりましたが、6<9のところがあまりにギャップが大きいので 間違っている気がします。まずは、右の不等式について、アドバイスをおねがいします。