• ベストアンサー

複素関数:Z^Zの実部と虚部を求めること

X 及び Y を実数としたとき、Z=X+iY (iは虚数単位) として、 複素関数:Z^Z (注:記号 ^ は、べき乗を表す)  実数部分と虚数部分を、それぞれ X, Y の関数として求めたい。 即ち、(Z^Z)の実数部分=f(X,Y) ,、(Z^Z)の虚数部分=g(X,Y) として f(X,Y) 及び g(X,Y) を求めたいのですが、この解を教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • ramayana
  • ベストアンサー率75% (215/285)
回答No.1

Z^Z = exp(Zlog(Z)) =exp( (X+iY)(0.5log(X^2+Y^2)) + iarctan(Y/X))) として計算したら、 f(X,Y) = exp(0.5Xlog(X^2+Y^2)-Yarctan(Y/X))cos(0.5Ylog(X^2+Y^2)+Xarctan(Y/X)) g(X,Y) = exp(0.5Xlog(X^2+Y^2)-Yarctan(Y/X))sin(0.5Ylog(X^2+Y^2)+Xarctan(Y/X)) になりました。

harete
質問者

お礼

早速のご回答ありがとうございました。

その他の回答 (1)

  • info222_
  • ベストアンサー率61% (1053/1707)
回答No.2

Z^Z=f(X,Y)+i g(X,Y) 計算したら f(x,y)={(X^2+Y^2)^(X/2)}{exp(-Y arg(X+iY))}cos{(Y/2)log(X^2+Y^2)+X arg(X+iY)} g(X,Y)={(X^2+Y^2)^(X/2)}{exp(-Y arg(X+iY))}sin{(Y/2)log(X^2+Y^2)+X arg(X+iY)} となりました。 ここで、arg(X+iY)はZ=X+iYの偏角θ(-π/2≦θ<3π/2) です。

harete
質問者

お礼

早速のご回答ありがとうございました。

関連するQ&A

  • 共役複素関数について

    複素数z=x+iyに共役な複素数がz*=x-iy であるということはわかるのですが、ある複素関数f(z)に共役な複素関数というものがどうゆうものであるかがよくわかりません。教えていただけるとありがたいです。

  • 複素関数の導関数

    微分の定義     lim{Δz→0} {f(z + Δz) - f(z)}/Δz に立ち戻らずに偏微分などを使って複素関数の導関数を求めたいのですが。     w = f(z) = u + iv, z = x + iy (x,y,u,vは実数) として     f'(z) = dw/dz = (d/dz)(u + iv) までは合ってますよね? ここから     du/dz = (∂u/∂x)(∂x/∂z) + (∂u/∂y)(∂y/∂z) として     ∂z/∂x = 1, ∂z/∂y = i より     du/dz = ∂u/∂x - i ∂u/∂z 同様に     dv/dz = ∂v/∂x - i ∂v/∂z としてしまっていいのでしょうか? 実際の例としてf(z) = sin(z)を例に教えてください。

  • 複素関数の1例について質問

    複素関数の1例について質問 f(z)=z^2-3z+2 のとき、その導関数は f’(z)=2z-3     で良いですよね。 逆に、曲線Cに関する積分は、(cの表示は省略) ∫f’(z)dz=∫(2z-3)dz=z^2-3z+C となるので良いと思います。 ここで、z=x+iy と置いて同様のことをすると、 f(z)=(x+iy)^2-3(x+iy)+2 =(x^2-y^2-3x+2)+i(2xy-3y) f’(z)=∂u/∂x+i∂v/∂x     =2x-3+i(2y)     (=2(x+iy)-3=2z-3) で良いですよね。 逆に、曲線Cに関する積分は、(cの表示は省略) 一般に ∫f(z)dz=∫(udx-vdy)+i∫(vdx+udy) なので、 ∫{2x-3+i(2y)}dz =∫(2x-3)dx-∫2ydy+i∫2ydx+i∫(2x-3)dy =x^2-3x-y^2+C+i(2xy)+i(2xy-3y) =(x^2-y^2-3x+C)+i(4xy-3y) となりましたが、 虚数部が(2xy-3y)になっていません。 何故でしょうか? ご教示、よろしくお願いします。

  • 複素関数の問題です。

    複素関数の問題です。 複素関数の問題で分からない問題があって困っています。 【問題】 F(z)=u(x,y)+iv(x,y), z=x+iy において u(x,y)=a, v(x,y)=b で表される曲線をxy平面上に描いたとき、それらの交点においてF´(z)≠0であれば、その交点における各曲線に対する接戦が互いに直交することをコーシー・リーマンの関係式を用いて示せ。ただしF´(z)はF(z)の導関数であり、関数u(x,y)の点(x,y)での微分は、 du=(∂u/∂x)dx+(∂u/∂y)dy で与えられる。 わかる方がいれば、どうか教えていただけないでしょうか? よろしくお願いします。

  • 複素微分について

     複素関数   f(z) = u(x,y) + iv(x,y) ・・・・・ u≠0、v≠0 は、2つの実数関数 u と v の組で表されるので、実数で微分したり積分したりすることはできると思いますが、   g(z) = u(x,y) ・・・・・ v = 0   h(z) = iv(x,y) ・・・・・ u = 0 は C-R の方程式を満たさないから、h や g を複素数で微分することは不可能なのですよね?  つまり、実関数を複素関数の一部と見なしても、実関数を複素数で微分することはできないと考えてよいかということです。  あんまり当たり前のことなのか(笑)、私が持っている2つの複素関数の本にはその類いの説明はありません。

  • 複素関数cos(z)の微分について

    w=u+iv=cos(z)とおいたときに,wがzの全域でコーシー・リーマン方程式(∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x)を満たすことを示し,微分係数を求めよ.(z=x+iy,iは虚数単位) と言う問題です. 解答を見てみると,  cos(z)=cos(x)cosh(y)-isin(x)sinh(y) の加法定理の関係式を使い,  u=cos(x)cosh(y)  v=-sin(x)sinh(y) したがって,  ・∂u/∂x=-sin(x)cosh(y)  ・∂u/∂y=cos(x)sinh(y)・・・I  ・∂v/∂x=-cos(x)sinh(y)  ・∂v/∂y=-sin(x)cosh(y)・・・II よって,コーシー・リーマン方程式を満たしている. となっていました. 疑問なのは,複素関数cos(z)の微分について調べているのに,IとIIでそれぞれcosh(y),sinh(y)の微分をしていることです.  cosh(y)=cos(iy),isinh(y)=sin(iy) なので,これも複素関数の微分となり,ここでは使ってはいけないのではないのでしょうか? ほかの方法があれば教えてください.また,  {cosh(y)}'=sinh(y),{sinh(y)}'=cosh(y) となる理由もよろしくお願いします.

  • 複素関数の名前

    複素数 c = x+iy, (x,y は実数, i は虚数単位) に対して関数 g(c) = x^2+y^2 に適当な名前を付けたいのですが、どのような名前が適当でしょうか? C++ のプログラムを書く時に使います。 sqrt(x*x+y*y) なら abs( ) がよいのでしょうけど、sqrt( ) の無い x*x+y*y を返すので、うまい名前を思いつきません。 このような関数に決まった数学的な呼び名があるのでしょうか?

  • f(z)の式に表す方法

    複素関数の問題です。 z=x+iyとする時、f(x,y)=(x^3-3xy^2+x)+i (3x^2 y - y^3 + y)をf(z)に表すにはどうすればよいのでしょうか?

  • 複素関数

    複素関数f(z)=z^2 (z=x+yi) に対して、その実部のグラフってどんなふうになるのでしょうか? 実部の式は、x^2-y^2ですよね。

  • コーシーリーマンの問題について

    φ=x^2-y^2,ψ=2xyはコーシーリーマンの式を満たすことを示せ。 また、複素関数wがzの関数で表すことができない場合は、コーシーリーマンの式を満たさないことを示せ。 という問題なのですが、 >また、複素関数wがzの関数で表すことができない場合は、コーシーリーマンの式を満たさないことを示せ。 ここの解は、 例えば、x^2+iy^2のような関数はφ=x^2,ψ=y^2であり、 ∂φ/∂x=2x,∂ψ/∂y=2yとなり、コーシーリーマンの関係式が満たされるのはz平面内で直線y=x上だけである。 よって関数x^2+iy^2は満たさない。 このような解でいいんでしょうか? よろしくお願いします。