• ベストアンサー

f(x,y)のClass

f(x, y) = { xy/(x^2 + y^2)^1/2 if (x, y) ≠ (0, 0), 0 if (x, y) = (0, 0) } 上の関数はC^0級であること、そして原点においてC^1級ではないことはどのように示すことができますでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

(x,y)≠(0,0)のとき f(x,y)=xy/√(x^2+y^2) f(0,0)=0 とすると 連続関数の積和平方根は連続で 商は分母≠0で連続だから (x,y)≠(0,0)のとき f(x,y)は連続 x^2+y^2-2xy=(x-y)^2≧0 x^2+y^2+2xy=(x+y)^2≧0 だから |xy|≦|2xy|≦x^2+y^2 の両辺を0<√(x^2+y^2)で割ると |xy|/√(x^2+y^2)≦√(x^2+y^2) だから lim_{(x,y)→(0,0)}f(x,y) =lim_{(x,y)→(0,0)}xy/√(x^2+y^2) =0 =f(0,0) fは連続だからC^0級 (x,y)≠(0,0)のとき f_x(x,y)=y^3/(x^2+y^2)^{3/2} y≠0のとき f_x(0,y)=1 x≠0のとき f_x(x,0)=0 lim_{y→0}lim_{x→0}f_x(x,y)=1 ≠lim_{x→0}lim_{y→0}f_x(x,y)=0 fは微分不可能だからC^1級ではない

kuma_daisuki
質問者

お礼

とてもわかりやすかったです! もう何度か書き起こして、血肉にしていきたいと思います。 ありがとうございます!

関連するQ&A

  • 関数f(x,y)がxに関して一様にyについて連続

    関数f(x,y)がxに関して一様にyについて連続であるかの説明で分らないところがありました。 【f(x,y)の定義】 (x,y)≠(0,0)のとき、f(x,y)=2xy/(x^2+y^2) f(0,0)=0 【説明】 f(x,y)がxについてもyについても連続であるが2変数x,yの関数としては原点(0,0)で連続でない。 f(x,0)=0,y≠0のときf(x,y)=2xy/(x^2+y^2)であるから、与えられたε、0<ε<1に対して |y|<δならば|f(x,y)-f(x,0)|<ε となるためには、容易に確かめられるように δ≦|x|ε/(1+sqrt(1-ε^2)) でなければならない。故に極限lim{y→0}f(x,y)=f(x,0)の収束はxに関して一様でない。 と説明がありましたが、δ≦|x|ε/(1+sqrt(1-ε^2))の関係式の求め方が分りません。 途中の計算方法わかるかた、教えてください。 よろしくお願いします。

  • y = x^2 と y=f(x)=x^2の違い

    自分の使っている参考書の 2次関数の基本形のグラフを調べよう というページの解説で 一般に2次関数はy=ax^2+bx+c(a≠0)の形で表されるんだけれど 今回はb=0、c=0とした最も単純なy=ax^2の形の2次関数についても考えてみよう。 このy=ax^2(a≠0)が2次関数の基本となるものだから特にこれを2次関数の基本形と呼ぶよ。 それでは、y=ax^2でa=1のときのもの、つまりy=x^2をy=f(x)=x^2とおいて、そのグラフをxy座標平面上の描いてみることにしよう。 と書かれているのですが y=x^2をy=f(x)=x^2とおいて の部分の意味がわかりません。 y=x^2とy=f(x)=x^2は同じもののように思うのですが 何のために y=x^2はy=f(x)=x^2とおく必要があるのでしょうか?

  • 極値問題なのですが,f(x,y)=x^4 + y^4 - 4x

    極値問題なのですが,f(x,y)=x^4 + y^4 - 4xy この関数の極限の求め方がわかりません... (x,y)=(0,0) (1,1) (-1,-1)? 解き方まで教えて頂ければ幸いです.

  • ∂f/∂x=∂f/∂yの表される解を考えてみました

    ∂f/∂x=∂f/∂y ・・・・・・・(1) の解について (1)を満たす解f(x,y)はz=x+yとしてf(x,y)=C(z) (C(z)はzについて微分可能な任意関数)である。 しかしこの解がそれ以外で表されるか否かというのを考えてみました。 (考察) f(x,y)が(1)の解であるならば、zを任意の定数として固定してy=-x+zのとき 合成関数の微分法を用いて df(x,-x+z)/dx=0 である。 これをf(x,-x+z)について解くと、f(x,-x+z)=C(z) (C(z)はzのみに依存する任意関数) すなわち df(x,-x+z)/dx=0 ⇔ f(x,-x+z)=C(z)                    ⇔ f(x,y)=C(x+y)  ・・・・・・・・・・・(2) しかし(1)に代入するとC(x+y)はx+yについて微分可能でないといけないことが分かるので 結局(2)は  df(x,-x+z)/dx=0 ⇔ f(x,y)=C(x+y) (C(x+y)はx+yについて微分可能な任意関数) ・・・・・・(2)' となる。 逆に(1)を満たす解の中でf(x,y)=C(x+y)の形以外の適当なx,yに依存する関数F(x,y)を考える。 y=-x+z(zは任意定数)と制限されれば x+yのみに依存する任意関数C(x+y)をとっても F(x,y)≠C(x+y)であるから (2)'からdF(x,-x+z)/dx≠0     つまりy=-x+zのとき dF(x,-x+z)/dx=∂F/∂x+dy/dx・∂F/∂y=∂F/∂x -∂F/∂y≠0 で このときF(x,y)は(1)を満たさない。 したがって(1)を満たす解はz=x+yとして f(x,y)=C(z) (C(z)はzについて任意の微分可能な関数)でしか表せない事が分かった。 この説明方法に誤り、アドバイスあれば指摘してください。 問題は(1)の解でy=-x+zと制限すれば必ずdf(x,-x+z)/dx=0なるという情報が分かっている。 F(x,y)をy=-x+zで制限されたときF(x,-x+z)/dx ≠0だから(1)はこのとき満たされないため f(x,y)=C(x+y)のみしか表せないと考えたのであるが、それでよいかどうか。 fが(1)の解 ⇒ y=-x+zのとき df(x,-x+z)/dx=0 これより  y=-x+zのときdF(x,-x+z)/dx≠0 ⇒ Fは(1)の解でない  だから (1)の解はf(x,y)=C(x+y)のみというのが自分の考え。

  • f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求

    f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求める問題で解答はfx=(1+xy)e^(xy+2y^2),fy=x(x+4y)e^(xy+2y^2),fxx=(2y+xy^2)e^(xy+2y^2), fxy={x+(1+xy)(x+4y)}e^(xy+2y^2),fyy={4x+x(x+4y)^2}e^(xy+2y^2)でそれぞれどのようにして微分されているのかを詳しく教えてください 特にfxxからまったく分からないので教えてください 回答よろしくお願いします。

  • f(x,y)=√(?xy?)の全微分可能性について

    f(x,y)=√(?xy?)の全微分可能性について f(x,y)=√(?xy?)の点(0,0)における全微分可能性について、全微分可能の定義に従って調べております。先日、アドバイスをいただいたことを参考に考えてみましたが、この考え方でよろしいのか、チェックしていただければと思います。 Δf=f(x+Δx,y+Δy)-f(x,y)より Δf=√{?(x+Δx)(y+Δy)?}-√(?xy?)で、x=0,y=0を代入すると、 Δf=√(ΔxΔy) ここで、(Δx,Δy)→(0,0)より、 Δf=0 よって、Δf=0Δx+0Δy+0√{(Δx)^2+(Δy)^2} と表せるので、全微分可能 以上、宜しくお願い致します。

  • f(x,y)の多項式

    f(x,y)をx、yの多項式とする。 f(x,y)=f(y、x)ならば、f(x,y)はs=x+y、t=xyだけで示せることを示せ。 という問題です。 教えてください!

  • f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求

    f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求める問題で解答はfx=(1+xy)e^(xy+2y^2),fy=x(x+4y)e^(xy+2y^2),fxx=(2y+xy^2)e^(xy+2y^2), fxy={x+(1+xy)(x+4y)}e^(xy+2y^2),fyy={4x+x(x+4y)^2}e^(xy+2y^2)でそれぞれどのようにして微分されているのかを詳しく教えてください fxxから本当に分からないので教えてください 回答よろしくお願いします

  • f(x,y)が原点からの距離r=√(x^2+y^2 )のみによる関数で

    f(x,y)が原点からの距離r=√(x^2+y^2 )のみによる関数であるとする、すなわちf(x,y)=h(r)=h(√(x^2+y^2 ))このとき ∂^2 f/∂x^2 +∂^2 f/∂x^2 をh'(r)=dh/dr (r),h'' (r)を用いてrの式で表せ この問題の解き方と答えがわかりません。教えてください。

  • 確率変数XとYはf(x,y)=cxy^2(0<x<y<2でそれ以外は0)で与えられた同時確率密度関数,Xの確率密度関数は?

    宜しくお願い致します。 [Q]The random variables X and Y have a joint probability density function given by f(x,y)=cxy^2 for 0<x<y<2 and 0 elsewhere a) Find c so that f is indeed a probability density function. b) Find P(X<1,y>1/2). c) Find the probability density function of X. [問]確率変数XとYはf(x,y)=cxy^2(0<x<y<2でそれ以外は0)で与えられた同時確率密度関数を持つとする。 (a) fが本当に確率密度関数であるようなcを求めよ。 (b) P(X<1,Y>1/2)を求めよ。 (c) Xの確率密度関数を求めよ。 [(a)の解]fが本当に確率密度関数なら∫_y∫_xf(x,y)dx=1. ∫[0..2]∫[y..0]cxy^2dxdy=∫[0..2]cy^2[x^2/2]^y_0dy =∫[0..2]cy^2(y^2/2)dy=c/2∫[0..2]y^4dy=c/2[y^5/5]^2_0 =c/2(32/5)=32c/10=1. ∴c=5/16 [(b)の解]P(X<1,Y>1/2)=∫[1/2..2]∫[0..1]5xy^2/16dxdy =∫[1/2..2]5y^2/16[x^2/2]^1_0dy =∫[1/2..2]5y^2/16・(1/2)dy =5/32∫[2..1/2]y^2dy =5/32[y^3/3]^2_1/2 =5/32[8/3-1/8/3] =0.41 [(c)の解]f_x(X)=∫_yf(x,y)dy=∫[0..2]5xy^2/16dy =5x/16[y^3/3]^2_0=5x/16(8/3)=5x/6 で(c)の解が間違いだったのですが正解が分かりません。 正解はどのようになりますでしょうか?