関数f(x,y)の連続性について

このQ&Aのポイント
  • 関数f(x,y)がxに関して一様にyについて連続であるかについて説明します。
  • 関数f(x,y)の定義と連続性の条件について説明します。
  • xに関して一様でない連続性を持つ関数f(x,y)について説明します。
回答を見る
  • ベストアンサー

関数f(x,y)がxに関して一様にyについて連続

関数f(x,y)がxに関して一様にyについて連続であるかの説明で分らないところがありました。 【f(x,y)の定義】 (x,y)≠(0,0)のとき、f(x,y)=2xy/(x^2+y^2) f(0,0)=0 【説明】 f(x,y)がxについてもyについても連続であるが2変数x,yの関数としては原点(0,0)で連続でない。 f(x,0)=0,y≠0のときf(x,y)=2xy/(x^2+y^2)であるから、与えられたε、0<ε<1に対して |y|<δならば|f(x,y)-f(x,0)|<ε となるためには、容易に確かめられるように δ≦|x|ε/(1+sqrt(1-ε^2)) でなければならない。故に極限lim{y→0}f(x,y)=f(x,0)の収束はxに関して一様でない。 と説明がありましたが、δ≦|x|ε/(1+sqrt(1-ε^2))の関係式の求め方が分りません。 途中の計算方法わかるかた、教えてください。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • ramayana
  • ベストアンサー率75% (215/285)
回答No.3

f(x,y) – f(x,0) = 2xy/(x^2+y^2) だから、 |f(x,y) – f(x,0)| < ε⇔ |2xy/(x^2+y^2)| < ε ⇔ ε|y|^2 – 2|x||y| + ε|x|^2 > 0 最後の式の左辺を |y| の2次式と見たとき、正の根を2個持つ。そのうち小さい方を a 、大きいほうを b とする。すると、 |f(x,y) – f(x,0)| < ε⇔ |y| < a となる。よって、 |y| < δ なるすべての y に対して |f(x,y) – f(x,0)| < ε ⇔ |y| < δ なるすべての y に対して |y| < a ⇔ δ≦ a となる。根と係数の関係から a = |x|^2/b で、 b = (|x| + sqrt(|x|^2(1-ε^2)))/ε だから、 a = |x|ε/(1+sqrt(1-ε^2)) を得る。

kosumi1977
質問者

お礼

すごいです。 独自では一生かかっても思いつかなかったと思います。 ありがとうございます。

その他の回答 (2)

  • ramayana
  • ベストアンサー率75% (215/285)
回答No.2

ああっ、失礼。ANo.1は、全然でたらめでした。陳謝して取り消します。

  • ramayana
  • ベストアンサー率75% (215/285)
回答No.1

どこから引っ張ってこられたのか、この説明は間違いですね。   「f(x,y)がxについてもyについても連続であるが」 とありますが、 x=0 のとき y の関数として連続でありません。同様に、 y=0 のとき x の関数として連続でありません。 lim{y→0}f(x,y)=f(x,0) という式が成立しないので、   「故に極限lim{y→0}f(x,y)=f(x,0)の収束はxに関して一様でない」 の記述はナンセンスです。

関連するQ&A

  • 関数の連続

    (1) f(x,y) = (xy^2)/(x^2+y^4) (x,y) /= (0,0)   f(x,y) = 0         (x,y) = (0,0) (2) f(x,y) = (xy(y^2-x^2))/(x^2+y^2) (x,y) /= (0,0)   f(x,y) = 0            (x,y) = (0,0) (1),(2)の関数が原点(0,0)で連続かどうか調べるにはどうしたらいいのですか? 連続の定義は lim(x→a) f(x) = f(a) ですがよくわかりません。 どなたか具体的な解き方を教えてください。

  • y=√xは,[0,4]で連続で・・・というのは,どういう意味ですか?x

    y=√xは,[0,4]で連続で・・・というのは,どういう意味ですか?x=0のとき連続と言えるのですか?x=0で連続を調べるときに,lim(x→-0)√x が定義できないので,関数の連続の定義にlim(x→-0)√x=lim(x→+0)√x=f(0)できないから,y=√xは,[0,4]で連続で・という表現がしっくりこないのですが。どうでしょうか?

  • 2変数関数の連続性

    f(x,y)={x^2(x^3+y)}/{x^4+y^2} (原点以外) f(0,0)=0 といった関数があったときに、このf(x,y)は原点で不連続なのでしょうか。 x=r cosθ y=r sinθ (以下sin = s, cos = cと書きます) と置換し計算すると、 lim_{(x,y)→(0,0)}f(x,y)=lim_{r→0}f(rcosθ,rsinθ) =lim_{r→0}{c^2(r^3c^3+rs)}/{r^2c^4+s^2} はθに依らず0に収束し原点で連続になってしまうような気がするのですがどうでしょう。これは不連続になるようですが(解答より)なぜなんでしょうか。よろしくお願い致します。

  • f(x)=x^3はx=0で連続か不連続か

    『lim[x→a]f(x)=f(a)⇔f(x)がx=aで連続』 の⇒向きの話について疑問を感じます。 たとえば、 『f(x)=x^3はx=0で連続か不連続か。』 という問題で、解答は、 『lim[x→0]f(x)=0、f(0)=0より、 lim[x→0]f(x)=f(0)であるからf(x)はx=0で連続である。』 とかって書いてあるんですが、lim[x→0]f(x)=0っていうのはf(x)にx=0を代入して出しているのではないのでしょうか? (建前上は、)y=x^3のグラフから極限値を調べた、ということなんでしょうか? まぁ、この問題は本当に基礎の問題だからこのように書いてあるわけで、実際の問題では、多項式などは連続関数なのが自明だから、そこからはlim[x→a]f(x)=f(a)を使って求める、ということなのかな?と思ったんですが、どうなのでしょうか?

  • 2変数関数の連続性と累次極限

    2実変数実数値関数 f(x,y) が 点(a,b) で連続のとき、最初に x を固定して y → b の極限をとってから、そのあと x → a とする累次極限 lim[x → a](lim[y →b]f(x,y)) は存在しますか ? 二重数列の場合は反例があるようなのですが。

  • 極値問題なのですが,f(x,y)=x^4 + y^4 - 4x

    極値問題なのですが,f(x,y)=x^4 + y^4 - 4xy この関数の極限の求め方がわかりません... (x,y)=(0,0) (1,1) (-1,-1)? 解き方まで教えて頂ければ幸いです.

  • 関数の連続性について

    「関数f(x)の定義域に属するxの値aに対して関数f(x)がx=aで連続⇔(1)lim[x→a]f(x)が存在(2)lim[x→a]f(x)=f(a) (1)(2)のどちらかが成り立たないとき、x=aで不連続である」 と教科書にあるんですが、(2)のみ言えれば極限値が存在し、かつその値はf(a)であると言えるのではないのでしょうか 教科書がわざわざ強調しているのでたいへん気になりました。 よろしくお願いします

  • x+y^3+xy=0で、yをxで微分し、y’を求めよ。

    x+y^3+xy=0で、yをxで微分し、y’を求めよ。 意味を考えずに機械的にやると 1+3y^2y’+y+xy’=0 となるのはわかるが 意味はよく分かりません。 (1)これが簡便な方法として、認められるのか もしよいのであれば、これでよい説明をつけてもらえませんか。 (2)定義にしたがって、もとめようとおもいましたが、  lim{f(x+h)-f(x)}/h でf(x)をどうしようかで、止まってしまいました。 以上、2つについて、アドバイスをお願いします。

  • 関数f(x)の連続性について

    よろしくお願いします. たとえば, 関数f(x)が与えられたとします. その関数は,X=a点の,ある近傍において 連続微分可能(単純のためここでは1回微分可能)とします. よって, その近傍においては,元の関数f(x)の点でも連 df(X)/dxに関しても連続ですよね.ここまでは OKですか? 次に, この場合,この条件から, X=a点で,f(a)も連続であると言えるのですか? ちなみにa点では,連続微分可能ということは言っていません. しかし, 関数f(x)がaの近傍で定義されていて, lim{f(x)}=f(a) x→a ならば,f(x)は,x=aで連続である と通常の解析本での連続の定義はされているので, これを表記せねば,連続であるとは言えないのでしょうか? それとも,表記せずとも,導出されてしまうのでしょうか? イプシロンデルタの表記法はなじみがないので, できれば,使うのであれば初心者にも分かりやすいように,どうぞお願いいたします.

  • 関数f(x)の連続性と微分可能性に関する問題です。

    aを実数とする。次で定義される関数f(x)の連続性と微分可能性を調べよ。 x≦0のときf(x)=0、x>0のときf(x)=x^a*sin1/x という問題について、解いている途中で混乱が生じました。 x≠0のときf(x)は連続かつ微分可能だから、x=0におけるふるまいを調べる。 x>0のとき、f'(x)=a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/xであり、x<0のときf'(x)=0 (i)右からの極限 -1≦sin1/x≦1だから、-x^a≦x^a*sin1/x≦x^a はさみうちの原理より、lim【x→+0】(-x^a)≦lim【x→+0】f(x)≦lim【x→+0】x^a a>0ならばlim【x→+0】f(x)=0 a=0のときはlim【x→+0】f(x)=1 a<0のときはlim【x→+0】f(x)は発散。 よってa>0のとき連続。a≦0のとき不連続。(答) 次に微分可能性を調べる。 (ii)右からの極限 lim【x→+0】f'(x)=lim【x→+0】{a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/x} (i)と同様に考えるとlim【x→+0】a*x^(a-1)*sin(1/x)はa>1のとき0。a=0のときも0。 a=1のときsin∞となり発散で微分不可能。a<1のときも発散で微分不可能。 ゆえにa>1またはa=0に限定してlim【x→+0】f'(x)の極限を調べる。 このときlim【x→+0】f'(x)=lim【x→+0】{-x^(a-2)*cos1/x} -1≦cos1/x≦1であり、同様にはさみうちの原理からlim【x→+0】f'(x)はa>2ならばlim【x→+0】f'(x)=0で微分可能。a<2ならば微分不可能。(答) 問題集には、a>1のとき微分可能。a≦1のとき微分不可能と書いてあります。私の解き方のいけない点を教えてください。