• ベストアンサー

関数f(x)の連続性と微分可能性に関する問題です。

aを実数とする。次で定義される関数f(x)の連続性と微分可能性を調べよ。 x≦0のときf(x)=0、x>0のときf(x)=x^a*sin1/x という問題について、解いている途中で混乱が生じました。 x≠0のときf(x)は連続かつ微分可能だから、x=0におけるふるまいを調べる。 x>0のとき、f'(x)=a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/xであり、x<0のときf'(x)=0 (i)右からの極限 -1≦sin1/x≦1だから、-x^a≦x^a*sin1/x≦x^a はさみうちの原理より、lim【x→+0】(-x^a)≦lim【x→+0】f(x)≦lim【x→+0】x^a a>0ならばlim【x→+0】f(x)=0 a=0のときはlim【x→+0】f(x)=1 a<0のときはlim【x→+0】f(x)は発散。 よってa>0のとき連続。a≦0のとき不連続。(答) 次に微分可能性を調べる。 (ii)右からの極限 lim【x→+0】f'(x)=lim【x→+0】{a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/x} (i)と同様に考えるとlim【x→+0】a*x^(a-1)*sin(1/x)はa>1のとき0。a=0のときも0。 a=1のときsin∞となり発散で微分不可能。a<1のときも発散で微分不可能。 ゆえにa>1またはa=0に限定してlim【x→+0】f'(x)の極限を調べる。 このときlim【x→+0】f'(x)=lim【x→+0】{-x^(a-2)*cos1/x} -1≦cos1/x≦1であり、同様にはさみうちの原理からlim【x→+0】f'(x)はa>2ならばlim【x→+0】f'(x)=0で微分可能。a<2ならば微分不可能。(答) 問題集には、a>1のとき微分可能。a≦1のとき微分不可能と書いてあります。私の解き方のいけない点を教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.2

連続性について、 a > 0 の場合の考察は、結論も根拠も正しい。 a = 0 のとき、lim[x→+0] f(x) は収束しない。 a < 0 のとき、確かに lim[x→+0] f(x) は発散するが、それは -x^a ≦ (x^a)sin(1/x) ≦ x^a のハサミウチでは説明できない。 別の論証が必要。 微分可能性について、 最初から、f ' (x) = { a x^(a-1) } sin(1/x) - { x^(a-2) } cos(1/x) という式を使ってしまっているので、それ以降の議論は、 f(x) が微分可能な範囲の x でしか成り立たない。 よって、f(x) が微分可能か否かの判定には、役に立たない。

milkyway60
質問者

お礼

ありがとうございます。

milkyway60
質問者

補足

ご回答ありがとうございます。 すみませんが、ご指摘してくださった部分の模範解答を教えていただけると大変うれしいです。 自分でも考えたのですが、思いつきませんでした。

その他の回答 (1)

  • nakaizu
  • ベストアンサー率48% (203/415)
回答No.1

あなたが調べたのはf'(x)の連続性であって、f'(0)が存在するかどうかを調べたわけではないからです。 微分の定義にしたがって f'(0)=lim(h→0)(f(h)-f(0))/h が存在するかを調べないといけません。

milkyway60
質問者

お礼

ありがとうございます。

関連するQ&A

  • 関数の連続性

    f(x)=xsin(1/x) (x≠0) f(x)=0 (x=0) (1)x=0におけるf(x)の連続性、微分可能性を調べよ。 (2)x≠0におけるf(x)の連続性、微分可能性を調べよ。 (1)は lim[x→0]xsin(1/x)=0=f(0) より連続性をもっている。 f'(x)=lim[h→0]{f(0+h)-f(0)}/h =lim[h→0]sin(1/h) となって極限値は存在しないよってf(x)は原点において 微分不可能である。 上記が自分なりに考えた答えです。あっているかどうかは分かりません。 解答がない為。 (2)についてですが、 x≠0の時は当然連続であるなんだと思いますが、どのように証明したらよいのですか?また、微分可能性はどのようになるのでしょうか? ご指導おねがい致します。

  • 関数の連続性ε-δ論法

    f(x)=xsin(1/x) (x≠0) f(x)=0 (x=0) (1)x=0におけるf(x)の連続性、微分可能性を調べよ。 (2)x≠0におけるf(x)の連続性、微分可能性を調べよ。 (1)ε-δ論法を用いて連続性を調べる。 0<x-0<δのとき |f(x)-f(0)|=|xsin(1/x)-0|=|x|*|sin(1/x)|≦|x|<δ 上記の式より lim[x→0]xsin(1/x)=0である。 よって x=0のときf(x)は連続である。 f'(x)=lim[h→0]{f(0+h)-f(0)}/h=lim[h→0]{hsin(1/h)}/h =lim[h→0]sin(1/h) lim[h→0]sin(1/h)の極限値は存在しない よってf(x)は原点において微分不可能である。 (2)(1)と同じようにε-δ論法を用いて連続性を調べる。 任意の点をaとおいて 0<|x-a|<δのとき |f(x)-f(a)|=|xsin(1/x)-asin(1/a)| =(x-a)sin(1/x)+a{sin(1/x)-sin(1/a)} =(x-a)sin(1/x)+2a[sin(1/2){(1/x)-(1/a)}cos(1/2){(1/x) + (1/a)}].....和と積の公式 となるのですが、ここから上記の式が 上記の式<δ にどのようにすれば良いのかが分かりません。 また、微分可能性は lim[h→0]{hsin(1/h)-asin(1/a)}/h =lim[h→0]sin(1/h)-{asin(1/a)}/h となってよくわからなくなってしまいます。 お願いします教えて下さい。 以上よろしくお願い致します。

  • lim(X→0)sin(1/X)とlim(x→0)cos(1/X)って何ですか?

    f(X) =X^2sin(1/X) (X≠0)     =0        (X=0) (1)f’(0)を求めよ。 (2)f’(X)はX=0で連続であるか という問題なのですが、(1)は解けたのですが、(2)が分かりません。 f’(X)を求めようと思ってf(X)を微分しました。 f’(X)=2Xsin(1/X)-cos(1/X)  となりました。 そしてlim(X→0)f’(X)を求めればいいのかと思ったのですが、 lim(X→0)sin(1/X)とlim(x→0)cos(1/X)が分かりません。 (2)の答えは『lim(X→0)f’(X)は存在しないため、連続ではない。』なのですが、lim(X→0)sin(1/X)とlim(x→0)cos(1/X)が存在せず、(1)で求めた数とは一致しないため連続ではないという考えでいいのでしょうか? お願いします。

  • f(x)=x^3はx=0で連続か不連続か

    『lim[x→a]f(x)=f(a)⇔f(x)がx=aで連続』 の⇒向きの話について疑問を感じます。 たとえば、 『f(x)=x^3はx=0で連続か不連続か。』 という問題で、解答は、 『lim[x→0]f(x)=0、f(0)=0より、 lim[x→0]f(x)=f(0)であるからf(x)はx=0で連続である。』 とかって書いてあるんですが、lim[x→0]f(x)=0っていうのはf(x)にx=0を代入して出しているのではないのでしょうか? (建前上は、)y=x^3のグラフから極限値を調べた、ということなんでしょうか? まぁ、この問題は本当に基礎の問題だからこのように書いてあるわけで、実際の問題では、多項式などは連続関数なのが自明だから、そこからはlim[x→a]f(x)=f(a)を使って求める、ということなのかな?と思ったんですが、どうなのでしょうか?

  • x^2sin(1/x) と 0(x=0) での連続性

    f(x)=x^2sin(1/x) (x≠0) 0 (x=0) での関数の連続性についての質問です。 x≠0のときは明らかに連続であるから、x=0のときの連続性を調べようとしたのですが、教科書を読むと、lim[x→a]f(x)=f(a)ならば連続であると書かれていました。 計算してみるとlim[x→0]x^2sin(1/x)=0=f(0)となり、f(x)は連続であるように思えたのですが、答えをみると、「原点以外で連続」となっていました。 lim[x→0]x^2sin(1/x)の答えが間違っているのですか?

  • 三角関数の極限の問題です。

    極限の問題です。 はさみうちを使おうと思ったのですが、分母分子ともに、三角関数が入っているので、どうはさめば いいのかわかりません(;_:) lim[θ→+0] -2(cosθ-1)/{sinθ^2+θ^2}=? はさみうちをつかわず、sinの極限に持ち込もうともしましたが、分子が足し算の形になっているの で、どうしたらいいかわかりませんでした... かれこれ半日… 相当手こずっています(x_x;) 誰か助けてくださいッ(泣)

  • 関数f(x)の連続性について

    よろしくお願いします. たとえば, 関数f(x)が与えられたとします. その関数は,X=a点の,ある近傍において 連続微分可能(単純のためここでは1回微分可能)とします. よって, その近傍においては,元の関数f(x)の点でも連 df(X)/dxに関しても連続ですよね.ここまでは OKですか? 次に, この場合,この条件から, X=a点で,f(a)も連続であると言えるのですか? ちなみにa点では,連続微分可能ということは言っていません. しかし, 関数f(x)がaの近傍で定義されていて, lim{f(x)}=f(a) x→a ならば,f(x)は,x=aで連続である と通常の解析本での連続の定義はされているので, これを表記せねば,連続であるとは言えないのでしょうか? それとも,表記せずとも,導出されてしまうのでしょうか? イプシロンデルタの表記法はなじみがないので, できれば,使うのであれば初心者にも分かりやすいように,どうぞお願いいたします.

  • 数III・関数f(x)の連続性

    こんにちは!数IIIの質問です。 f(x)=x^2cos1/x  (x≠0) a (x=0) この時、f(x)がx=0で連続になるような定数aの値を求めよ。 という問題です。 0≦lim(x→0)|f(x)|=lim(x→0)|x^2cos1/x|≦lim(x→0)x^2=0 よってlim(x→0)|f(x)|=0 ∴lim(x→0)f(x)=0 したがって、a=0 □ と、解いていくと解説に書かれてましたが、解答の頭からf(x)に絶対値記号がついている理由がわからないんです。。 問題にはついていなかったのに、なぜ絶対値をつけるのでしょうか。 どうぞよろしくお願いします。

  • 関数の連続性を調べる問題です。

    関数の連続性を調べる問題です。 f(x) = {2xsin(1/x)-cos(1/x) (x≠0)     {0 (x=0) でx→0のときのf(x)の極限は発散するそうなのですが、 その示し方を教えてください。お願いします。

  • 三角関数の極限

    次の極限値は存在するか。存在するときはその値を求めよ。 (1)lim[x→0]sin(1/x) (2)lim[x→0]xsin(1/x) (3)lim[x→∞]sin(1/x) 答えはそれぞれ、存在しない、0、0なのですが、理由が全く分かりません。 (1)では存在しなかった極限がsinの前にxがつくだけで極限値を持つことや、同様にx→0が x→∞に変わっただけで極限値を持つことが理解できません。 lim[x→∞]sinxθ/x であれば、はさみうちの原理を利用すれば解けるのですが、この問題はどう解いたらよいのか分かりません。 教えてください。