• ベストアンサー
  • 困ってます

ガロア理論:体の拡大で起こっていること

ガロア理論の考えでは,基礎体K上の既約多項式の根をすべて添加したガロア体Σをつくる.そのガロア体を基にΣ/Kの自己同型群Gを今度は考える.その自己同型群の中に正規部分群N1を探し,その正規部分群で群Gの剰余群G/N1=G1を作る.また,G1の中に正規部分群を探し,N2とする.G1/N1の剰余群を作り,このやり方を繰り返し,群Gを小さくし,最終的には,単位元のみの群Eまで小さくすると理解しています. さて,正規部分群を使って,小さくしていく場合,対応する体側ではどのような拡大が起こっているのでしょうか.可解であるためには,剰余群の次数が素数であることが求められますが,対応する体の拡大はその素数乗根の共役根による拡大になっているといっていいのでしょうか.

noname#178429
noname#178429

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

必ずしも言えないと思います。 一般に、 p を素数として、   [1]  K の標数が 0   [2]  1 の p 乗根がすべて K に含まれる   [3]  Σが K の p 次ガロア拡大体 という条件が満たされるとき、   [4]  K の元 a が存在し、Σ = K(a^(1/p)) が言えます。 しかし、[3] の条件だけで [4] は言えません。例えば、次のような例があります。 Q を有理数体として、 Q 上の多項式 F(X) を次のように置きます。   F(X) = X^3 - 3X + 1 F(X) の根のひとつをαとすると、 Q(α) は、 Q 上の 3 次ガロア拡大体です(注1)。しかし、 Q(α) には、 a^(1/3) (aは、立方数以外の有理数)というタイプの数が含まれません(注2)。 (注1) F(x) の他の2根は、α^2 - 2 と -α^2 - α + 2 であって、どちらも Q(α) に含まれる。したがって、 Q(α) は、 Q 上のガロア拡大体である。 (注2) ω = exp(2πi/3) とする。もし、 a^(1/3) が Q(α) の元だとすると、それの Q 上の共役元であるところの ωa^(1/3) と ω^2a^(1/3) も Q(α) に含まれなければならない( Q(α) が Q 上の正規拡大体だから)。しかし、Q(α) が実数のみからなる体であるから、これは不可能( F(X) の根が3つとも実数であることに注意)。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

早速のご回答有り難うございました. 標数の仮定と1のp乗根の仮定はずぼらして抜かしていました. 理解できました.

関連するQ&A

  • ガロア理論についてなのですが

    代数学の問題で、 体K=Q(√m,√n)はQ上ガロア拡大で、ガロア群Gは、 (Z/2Z)^2と同値であることを示せ。 なんですが、体Q(√m,√n)が、Q上4次拡大であることは示せたのですが、そこからどうすればいいのかわかりません。 できればガロア理論に関しての参考URLか、解法を教えていただきたいのですが。お願いしますm(__)m

  • ガロア理論

    Q(√2+√3)/Qがガロア拡大であることを示し、そのガロア群を求めよ。 さらに、ガロア群の部分群と、それに対応する拡大の中間体をすべて求めよ。 教えて下さい。よろしくお願いします。

  • ガロア拡大についてなのですが…

     代数学の本を読んでいて、ちょっと理解しにくい部分があったので、質問させていただきます。  「体Kを含むような代数体がQ(有理数全体の集合)上のガロア拡大体ならば、Kの原始元αと同時に、αの最小多項式の根α1,α2…,αnを含んでいなければならない」という風に書かれていたのですが…αを含まなきゃならないのはわかるのですが、なぜα1,α2…,αnまで、含む必要があるのでしょうか??  すっきりせず気持ちが悪いので、どなたかお知恵をお貸ししていただけると幸いです。

  • 1の原始20乗根の円分体のガロア群を調べています。

    ξを1の原始20乗根とします。 このとき、Q(ξ)/Qは8次のガロア拡大ですが、この拡大体の中間体はいくつあり、それぞれのQ上の生成元は何か?という問題を考えています。 Galois(Q(ξ)/Q)をGとおいたとき、 Gは20を法とする既約剰余類U(Z/20Z)に同型ですよね。 すなわち、結果的には(Z/2Z)×(Z/4Z)という2つの巡回群の直積に同型になるはずです。 Q(ξ)/Qの中間体の個数は、ガロアの基本定理より、Gの互いに異なる部分群の個数ですから、 結果的に7つあることがわかりました。 G=Z/2Z × Z/4Zの元として、それぞれの部分群は (1)   <(0,2)> (2)   <(1,0)> (3)   <(1,2)> (4)   <(0,1)> (5)   <(1,1)> (6)   <(1,0) , (0,2)> (7)   <(1,1) , (0,2)> を生成元とする群だとわかりました。 具体的に σ(i)=-i σ(ξ)=ξ τ(i)=i τ(ξ)=ξ^2 とおけば、σは(1,0) τは(0,1)に対応します。 問題は、生成元を求める方法がわからないことで、 (1)、(2)に対応する不変体は簡単にわかったのですが、 (3)、(5)、(7)の不変体のQ上の生成元がわからないのです。 例えば、(3)の場合。 不変体をKとおきます。 <(1,2)> は <στ^2>に対応しています。 このστ^2で動かない元を具体的に探してみようと思ったのですが、 Q(ξ)のあらゆる元は、 a_0+a_1i+a_2ξ+a_3ξ^2+a_4ξ^3+a_5iξ+a_6iξ^2+a_7iξ^3 の形ですから、これをστ^2でとばしても、動かない元全体が、Kになるわけですよね。 でも、それを計算してみても式がとても汚くなって生成元の形がわかりませんでした。 どうすればいいのでしょうか。 教えてください。

  • ガロア拡大でない例について

    ガロア理論を勉強しています。ガロア拡大については、ある程度理解できたつもりなのですが、有理数体Qに2の3乗根を添加した体Q(3√2)がQのガロア拡大でない理由がわかりません。 (複素数体Cが実数体Rのガロア拡大になっていることはわかります。) もしもわかられる方がおられれば、お教えいただければ幸いです。

  • ガロア理論:未知数の体の拡大

    ガロア理論で体の拡大といえば,通常既知の数,例えば,2のベキ根を添加して拡大すると本に書かれています. しかし,一方では,方程式が解けるということについて,次のようなことも書かれています. "いくつかのベキ根の有理式でf(x)の根が表せるということは,これらの根がすべて,いくつかのベキ根を含む体に含まれることにほかなりません" この記述は一応もっともだと思うのですが,"いくつかのベキ根を含む体"というとき,この拡大体を作るには,ベキ根の中に入る数(前の例でいえば,2)のように予めわかっていなければ,拡大できないのではないかとおもわれますがどうでしょうか.また,一歩譲って,ベキ根の中に入る数を未知数のままで体の拡大を行ったとしても根を求めるために必要ベキ根の値がぴったりと存在するかどうかはどのように保証されるのでしょうか.未知数による拡大しようとすれば,不可算無限のベキ根で拡大すれば,できそうですが,上の記述の"いくつかのベキ根"とは整合が取れません.この辺はどのように考えているのでしょうか. それと,3次方程式の根の公式を見ると,2乗根と3乗根が入れ子になっていますが,このような上の"..."の中に入っているのでしょうか.論理的には入っていないように見えるのですが. お願いします.

  • ガロア理論:単拡大定理の意義

    ガロア理論で,有理数体を係数体として,その根をx1,x2,...xnとしたとき,これらの根を添加した体Q(x1,x2,...xn)と単拡大定理を使った拡大Q(V(x1,x2,...xn)とはどこが違うのでしょうか.もちろん表現として違うことはわかりますが,この根を変数とするパラメータVが存在することによって,体を扱う上で何が違うのでしょうか.単拡大定理の存在理由が今一つわからないので,教えてください.

  • ガロア体 について質問します

    ガロア体の基礎を学んでいるのですが、計算方法の辺りで分からず悩んでいます。 わかる方がおられましたら教えてください! 下のような例について考えます。 ------------------------------------------- GF(4)=GF(2^2)={0,1,α,α^2} の拡大体です。 f(x)=x^2+x+1 についてαを根として考えます。 すると、 f(α)=α^2+α+1=0より α^2=-(α+1)    =-α-1     …(1)    =α+1 α^3=α^2*α    =(α+1)α    =α^2+α    =α+1+α    =α(1+1)+1    =1 ------------------------------------------- のようになります。 ここで質問なのですが、 【質問1】 上記(1)の部分で「-α-1=α+1」となりますが、なぜ「-α=α」なのでしょうか。 【質問2】 上記のようなガロア体においては「1+1=0」となります。なぜでしょうか。理由について教えてください。 ※GF(3)={0,1,2}では「1+1=2」です! 私が疑問に思っていることは以上です。 ガロア体初心者ですので、是非やさしくおしえてくださいm(_ _)m

  • 体の準同型について

    複数の本でガロア理論について学んでいるのですが、 「K自己同型」という言葉の定義が複数あって困っています。 (1)K,Aを体とする。KからAへの準同型があるとき、AをK代数という。 K,A,Bを体、φ:K→A、ψ:K→Bを準同型とし、φ,ψにより、A,BをK代数とみなす。このとき、準同型f:A→Bが、f◦φ=ψという条件を満たすとき、fをK準同型という。K準同型が体の同型のときK同型という。 AがK代数である時、AからAへのK同型全体の集合は写像の合成により群になる。これをK自己同型群といい、Aut_k (A)とかく。 (2)Aを一つの体とする。Aの自己同型全体をAut(A)で表し、自己同型群と呼ぶ。 Aの一つの部分体Kが与えられたとする。σ∈Aut(A)がKのすべての元を固定するとき、σはAのK上の自己同型と呼ばれる。K上の自己同型の全体はAut(A)の部分群をなすので、この部分群をAのK上の自己同型群という。 (2)の定義の方は理解できたのですが、(1)のK代数の扱いがよくわかりません。この二つの定義は本質的には同じことを定義しているのでしょうか。(よろしければ、そうなる理由も書いていただけると嬉しいです。)

  • ガロア拡大

    体Kの単純代数拡大体 L=K(γ) f(x):元γのK上の最小多項式 n=deg(f) G=Gal(L/K) M=L^{G}(固定体) g(x)=Π(x-σ(γ)) σ∈G の時、g(x)∈M[x]を示して、[L:M]=|G| を示したいです。 g(x)∈M[x]であることとはつまり、 σ(γ)∈M(=L^{G}) であることを示せばいいと思うのですが σはK上同型写像でありますが、γはK上にないので σ(γ)=γ であることをいえません。どのように示せばよいのでしょうか?