2桁の自然数の数を求める方法

このQ&Aのポイント
  • 6で割ると5余り、8で割ると7余るような2桁の自然数は23、47、71、95の4つ存在します。
  • 解説によると、この問題は6で割ると5余り、8で割ると7余る条件を満たす2桁の自然数を求める問題です。
  • この問題を解くには、まず6で割ると5余り、8で割ると7余る条件を式で表現し、それを解いて2桁の自然数を求めます。
回答を見る
  • ベストアンサー

2桁の自然数はいくつあるか

■6で割ると5余り、8で割ると7余るような2桁の自然数はいくつあるか。■という問題について悩んでいます。 解説によると、 6で割ると5余る数は6a+5、8で割ると7余る数は8b+7で表される(a,bは自然数)。 この2つの条件を満たす2桁の自然数Nは、 N=6a+5=8b+7≦99…(1) (1)の辺々に1を加えると、 N+1=6a+6=8b+8 =6(a+1)=8(b+a)≦100 よって、N+1は、6と8の最小公倍数24の倍数である。 100以下の自然数で、24の倍数であるのは、24、48、72、96であるから、Nは23、47、71、95の4個である。 とのことなのですが、何故(1)の辺々に1を加えたのかが分かりません。 どなたかご教授お願いします。

  • reie
  • お礼率58% (53/90)

質問者が選んだベストアンサー

  • ベストアンサー
  • queuerev2
  • ベストアンサー率78% (96/122)
回答No.3

A,B,C,D,Eを自然数として、Aで割るとB余り、Cで割るとD余る数Eは、そのようなEが1つ存在するならば、結局AとCの最小公倍数の間隔で無限に存在します。(それがなぜかは私のような数学のド素人にはうまく説明できないのですが) 言い換えれば、1つのEと最小公倍数の差がわかれば、無限に存在する他のEもわかるということになります。 そこで、 (AとCの最小公倍数)-E が何かを考えてみると、今回の問題の場合には1であることが簡単にわかる、ということだと思います。 差が1であることが簡単にわからないと仮定して、別解を示します。 (別海になっているかどうかわかりませんが) N=6a+5=8b+7より、N-5=6a=8b+2。 ・・・ 式1 (余りのない6aまたは8bのどちらかを得る) 右の統合だけを見ると、6a=8b+2 ・・・ 式2 N-5は6の倍数であり、8で割ると2余る。余りの2は6と8の最大公約数(である2)の倍数なので、N-5は存在する。 ここで、 6x+8y=2 ・・・ 式3 となる整数xとyの組み合わせを見つける。 (式3の2は、6と8の最大公約数の2である) 8-6=2なので、明らかに x=-1, y=1、つまり 6×(-1)+8×1=2 という組み合わせがあることがわかる。(明らかでない場合でも「拡張ユークリッドの互除法」という計算法を使うと組み合わせが見つかるらしいです) 式3より6x=-8y+2 これを式2から引くと 6a-6x=8a+8y ここでx=-1, y=1を代入すると、 6a+6=8a+8 以下は回答者様の提示された解説そのままとなります。 (途中の計算のやり方によっては、6a-18=8b-16 になったりすることもありますが、同様に答えは出ます)

reie
質問者

お礼

お礼が遅くなってしまいました。詳しいご回答ありがとうございます。

その他の回答 (2)

  • zuntac
  • ベストアンサー率36% (45/124)
回答No.2

A = B が成り立っている場合に、この式の両辺に同じ操作(計算)をしても = で結ばれた関係はくずれません。 例えば、両辺に同じ数 5を掛けた場合には 5 A = 5 B が成立します。 同様に、両辺に同じ数 1を加えた場合には A + 1 = B + 1 が成立します。 これにより以下が成立します。 N=6a+5=8b+7≦99…(1) (1)の辺々に1を加えると、 N+1=6a+6=8b+8 =6(a+1)=8(b+1)≦100 ある数は「6で割ると5余る」のであれば、ある数がもう一つ大きければ6で割り切れるので「(ある数+1)は、6で割切れる」ことになります。8の場合にも同様です。「ある数がもう一つ大きい場合に6, かつ8で割り切れる」と読み替えられることに気が付けば、両辺に1を加えるという操作をしようと考え付きます。

  • asuncion
  • ベストアンサー率33% (2126/6287)
回答No.1

6(a+1)と8(b+1)を作るためのちょっとした技巧だと思います。

関連するQ&A

  • 2桁の自然数のうち、4の倍数

    2桁の自然数のうち、4の倍数はいくつあるか? 模範解答: 2桁の自然数全体の集合をUとする。 Uの部分集合のうち、4の倍数全体の集合をAとすると      A = { 4・3, 4・4, ......, 4・24 } よって、求める個数は      n(A) = 24 - 3 + 1 = 22 (個) ※サイドノート: n(A) = 24 - 3 = 21 (個) ではない! ・・・という問題で、自然数は0を含まないと知っていたので、 1から99の範囲だと思い込み、99/4 = 24 (余り1)、つまり24、 と自信満々で間違えてしまいました。2桁でしたね・・・。 でも、模範解答の計算方法がいまいち不明です。      4・1 = 4      4・2 = 8 の2つは、1桁の自然数なので除外しなければならないんですよね。それなら、      n(A) = 24 - 2 = 22 (個) でいいんじゃないですか? なぜ、模範解答はわざわざ - 3 + 1にしているのですか? この-3って何ですか? この+1って何ですか? 教えて下さい。お願いします。

  • 中学2年程度数学3ケタの自然数が3の倍数であることを証明する問題について

    【問題】 各位の数字の和が3の倍数である3桁の自然数があります。この自然数が3の倍数であることを証明しなさい。 <証明> 3桁の自然数を  100a+10b+c …(1) とおく。 条件「各位の数字の和が3の倍数」より a+b+c=3n (nは自然数) …(2) とおく。 (2)より c=3n-a-b …(3) (1)のcに(3)を代入。 100a+10b+c=100a+10b+(3n-a-b)  =100a-a+10b-b+3n  =99a++9b+3n  =3(33a+3b+n) a,b,nは自然数より(33a+3b+n)は自然数である。 よって、  3(33a+3b+n) は、3の倍数である。 したがって、各位の数字の和が3の倍数である3桁の自然数は3の倍数である。  終わり とあるのですが、(3)でなぜ突然cイコールの形にするのかがいまいち腑に落ちません。 なんとなくそれは証明を進めるに当たってもちろんそうしなければならないからだという気はするのですが・・・ やはり証明は理由抜きで何度も繰り返し身体に解法を染みこませるしかないのでしょうか… どなたかわたしのような愚者にも分かるような説明をしていただけるお優しい方おりましたら、回答お待ちしております。

  • 倍数の問題

    次の問題は小学校5・6年の参考書に載ってあったのですが、この問題を見て疑問に思ったことがあります。 【問題】12,18のどちらで割っても3余る数のうち、最も小さい整数を求めなさい。 この問題は、どちらで割っても余りが同じになるので、最小公倍数をgcd(a,b)で表すとすると、  gcd(12,18)+3=39 で解けるのですが、 (割ると3余るということは、割られる数は割る数の倍数より3大きいということになるから。) 余る数が違ったらどうやって解くんだ!!という疑問が生まれてしまいました。 問題にしてみると、次のようになります。 【問題】aで割ると余りがpになり,bで割ると余りがqになる数のうち、n番目の整数を求めよ。 ただし、最小公倍数をgcd(a,b)で表すものとする。 条件を満たす整数を1番目に限定しないようにしました。 これがp=q=rなら、gcd(a,b)n+rで簡単に求められるのですが、上のように余りが異なる場合はどうやって求めれば良いのでしょうか?

  • 次の3条件にあう整数のうち、いちばん小さい数と、いちばん大きい数を求めなさい。がわかりません。

    次の3つの条件にあう整数のうち、いちばん小さい数と、いちばん大きい数を求めなさい (1) 3桁の数である (2) 16の倍数である (3) 24の倍数である 答え144 960 解き方 16と24の最小公倍数48 100÷48=2あまり4 1000÷48=20あまり40 48×3=144、48×20=960 最小公倍数の求めかたはわかりますが、なぜ100を48で割るのですか?またどうして48と3をかけるのですか? 1000÷48も、48かける20も意味がわかりません。 お願いします。m(__)m

  • 4桁の自然数について説明しなさい。

    各位の数の和が9の倍数である正の整数は、9の倍数である。このことがらが成り立つことを、4けたの自然数について説明しなさい。(千の位、百の位、十の位、一の位をそれぞれa、b、c、dとしなさい)と言う問題ですが、実は弟の聞かれてやってみましたがさっぱり・・わかりませんでした。何方か助けてください。

  • 任意の三桁の自然数を2つ並べると

    任意の三桁の自然数 これを2つ並べてできた6桁の自然数は、必ず7の倍数になります 例えば、523523、198198、851851等々は、7の倍数です とはいえ、1万通り全てが7の倍数になるのかどうかは、実際に計算して確かめてはいません でも、たぶん全て7の倍数かなと思います 全てを計算しないで、全てが7の倍数であることを証明するには、どうすればいいのでしょう?

  • 自然数

    等式(a^2)+(b^2)=(c^2)…(1)をみたす3つの自然数a,b,cについて。 等式(1)をみたす自然数a,b,cにおいて (1) a,b,のうち少なくとも1つは3の倍数である これを成り立つ方法を教えてください 自然数nは3k-2,3k-1,3k(Kは自然数) n=3k-2のとき (n^2)=9(k^2)-12k+4=3(3(k^2)-4k)+1) n=3k-1のとき (n^2)=9(k^2)-6k+1=3(3(k^2)-2k)+1) n=3kのとき (n^2)=9(k^2)=3*3(k^2) ここまでしか分かりません。

  • 自然数の問題

    宜しくお願いします 2けたの自然数aと3けたの自然数bについて、a:b=3:4であり、 √a+bの値が自然数となるとき、a、bの値を求めなさい。 という問題の答えは、a=84、b=112です。 √a+bの値が自然数となるので、11×11=121  12×12=144 ・・・で、 3:4になる数 かつ 7の倍数になる数を見つける方法しか 思いあたりませんでした。 どのように求めたらよいのでしょうか? 宜しくお願いします

  • n×mのタイルで最小の正方形を作る

    少し前の質問で疑問に思ったことがあるのですが、 1 n×mのタイルを複数枚使って最小の正方形を作るとき、正方形の1辺の長さはn,mの最小公倍数である。(n,mは自然数) 2 n×m×kのブロックを複数個使って最小の立方形を作るとき、立方形の1辺の長さはn,m,kの最小公倍数である。(n,m,kは自然数) という命題は真でしょうか? もし真ならその証明は簡単でしょうか?

  • 数学A 整数の性質の証明について

    問題 nは自然数とする。n+3は6の倍数であり、n+1は8の倍数であるとき、     n+9は24の倍数であることを証明せよ。 この問題の解答は、 n+3,n+1は自然数a,bを用いて,n+3=6a ,n+1=8bと表わされる。 n+9=(n+3)+6=6a+6=6(a+1) ・・・(1) n+9=(n+1)+8=8b+8=8(b+1) ・・・(2) よって(1)よりn+9は6の倍数であり,(2)よりn+9は8の倍数でもある。 したがって,n+9は6と8の最小公倍数24の倍数である。 とこのようになっています。 ここで質問ですが、上の証明は自然数a,bを用いてnを表示していますが、 これを、整数a,bを用いてnを表示したら、不正解になってしまうのでしょうか。 理由も含め教えてください。よろしくお願いします。