• ベストアンサー

次の3条件にあう整数のうち、いちばん小さい数と、いちばん大きい数を求めなさい。がわかりません。

次の3つの条件にあう整数のうち、いちばん小さい数と、いちばん大きい数を求めなさい (1) 3桁の数である (2) 16の倍数である (3) 24の倍数である 答え144 960 解き方 16と24の最小公倍数48 100÷48=2あまり4 1000÷48=20あまり40 48×3=144、48×20=960 最小公倍数の求めかたはわかりますが、なぜ100を48で割るのですか?またどうして48と3をかけるのですか? 1000÷48も、48かける20も意味がわかりません。 お願いします。m(__)m

質問者が選んだベストアンサー

  • ベストアンサー
  • gejke
  • ベストアンサー率40% (40/99)
回答No.3

この問題を読みかえると以下のようになります。 100~1000の間にある48の倍数で、1番小さい数と1番大きい数を求めなさい。 なぜ100~1000(厳密には999)かといえば条件(1)の3桁の数であるからです。 なぜ48の倍数かといえば条件(2)と(3)の最小公倍数が48であるからです。 具体的な解き方を似たような例で考えてみます。 「100~1000の間にある3の倍数で、1番小さい数と1番大きい数を求めなさい。」 ば3の倍数で最初に100を超えるのは102のときですが、これを求めるとき、その1個前の状態を求めるのが楽なのです。 100までに3の倍数はいくつ入っているか考えるために、 100÷3=33…1 とし33個入っているとわかります。 33個目の数字は3が33個あるということなので 3×33=99 となります。 この次の3の倍数が100を最初に超えるのであり 34個目の3の倍数なので 3×34=102となります。 次に1000以下で最大の3の倍数はと何かという場合 1000÷3=333…1 より3の倍数が1000以内に333個にあり、333番目が一番大きいので 3×333=999 となり999が最大となります。 これと同様のことを回答例はやっています。 上の例の3の倍数を48の倍数に置き換えてやると 回答例と同じになります。

noname#90278
質問者

お礼

ありがとうございます

その他の回答 (2)

回答No.2

「3桁の数である」の条件があるからです。 3桁の数字で一番小さいのが「100」で一番大きいのが「999」になります。 「16の倍数である」と「24の倍数である」の条件を同時に満たす数は16と24の最小公倍数である48の倍数になりますので、答えは必ず48の倍数になります。 100÷48=2あまり4 ということは、48×2までは2桁、次の48×3は3桁の数で一番小さい数になりますので、48×3が答えになります。 1000÷48=20あまり40 も同様に、次の48×21では4桁になってしまいますので、48×20が3桁で最大の数ということになります。 (本当は、999÷48とするのが正しいのかもしれませんが、計算を簡単にするため1000で計算する方が良いでしょう。仮に割り切れたときはその一つ前の数字という判断ができます。)

noname#90278
質問者

お礼

ありがとうございます

  • haberi
  • ベストアンサー率40% (171/422)
回答No.1

100には48が二つはいります。つまり48X2なら100より小さい、つまりは二桁です。48が3つでぎりぎり100をこえる、つまりは三桁になります。 また1000には48が20個はいります。48X21だと1000以上、つまりは4けたになります。 20個だとぎりぎり3桁になります。

noname#90278
質問者

お礼

ありがとうございます

関連するQ&A

専門家に質問してみよう