• ベストアンサー

このような自然数は存在するのでしょうか?

いま、n桁の自然数、Nがここにあるとします。そのNを一の位から順番を逆に並べなおした数をMとします。このとき、MがNの約数となるような自然数は存在するのでしょうか?(例えば、N=5431ならば、M=1345です。)無限に自然数はあるので、ひとつくらいはありそうな気もしますが、どうなのでしょうか? ただし、2000、1234321、1210000、22222のような明らかに条件を満たす数は除きます。

質問者が選んだベストアンサー

  • ベストアンサー
  • vaguechat
  • ベストアンサー率85% (47/55)
回答No.2

排除すべき明らかな条件というのが、 (1) 逆順が同じ数になるもの (2) 逆順が0で始まるもの として、 1億までで条件を満たす自然数のリスト 8712 9801 87912 98901 879912 989901 8799912 9899901 87128712 87999912 98019801 98999901 もし、上の(2)の条件を変更して、 逆順が0で始まってもよい(例:9870→0789=789として扱う)が、 逆順の10の冪乗倍が元の数になってはいけない(例:200→002=2は駄目)なら、 1万までの自然数で上に挙げたもの以外に、 510 540 810 2100 4200 5100 5200 5400 5610 5700 5940 6300 8100 8400 8910 も該当し、かなり多くなる。

その他の回答 (1)

  • nag0720
  • ベストアンサー率58% (1093/1860)
回答No.1

N=87912 N=879912 N=8799912 N=87999912

関連するQ&A

  • 自然数の組には無限の降下列が存在しない?

    自然数の組に対して、辞書式順序≫を次のように定義する。 (n1,m1) ≫ (n2,m2) ⇔ n1>n2 または (n1=n2 かつ m1>m2) すると、 (n1,m1) ≫ (n2,m2) ≫ (n3,m3) ≫ ... となるような無限降下列は存在しないことがいえる。 直感的に,(N,N)は無限に存在するから降下列は無限にある気がするのですが,なぜ無限にならないのでしょうか?

  • 自然数と偶数の一対一対応について

    自然数の中から小さい方から順番にn個取り出した集合をAとし、 正の偶数の中から小さい方から同様に、同じ数だけ取り出した集合をBとします (要は自然数と正の偶数の一対一対応です) A={1,2,3,4,5, ...n} B={2,4,6,8,10,...2n} (AとBは同じ数) ここで、あるnの時の"Aには存在しないBの要素(値)の数"を考えます n=1の時、1個 n=2の時、1個 n=3の時、2個 個数だけ上げていくと、 1,1,2,2,3,3,4,4,5,5,.....と続きます "Aには存在しないBの要素の数"は、nの数に対して単調増加しており、 全てのnにおいて、少なくとも1以上であるように見えます また、nが無限大になった時でも、"Aには存在しないBの要素の数"は1以上あるようにしか思えません nが無限の時、Aを自然数全体の集合、Bを正の偶数全体の集合と呼ぶとします。 nが無限の時でも、Aに含まれないBの要素が存在します。 言い換えれば、自然数(=A)ではない正の偶数が存在するということです。 (もしそうなら最大値の存在が示せそうな気がしますし、現時点で私はそれが正しいように思います) この考えで、どこか間違いがあれば教えてください

  • 2桁の自然数はいくつあるか

    ■6で割ると5余り、8で割ると7余るような2桁の自然数はいくつあるか。■という問題について悩んでいます。 解説によると、 6で割ると5余る数は6a+5、8で割ると7余る数は8b+7で表される(a,bは自然数)。 この2つの条件を満たす2桁の自然数Nは、 N=6a+5=8b+7≦99…(1) (1)の辺々に1を加えると、 N+1=6a+6=8b+8 =6(a+1)=8(b+a)≦100 よって、N+1は、6と8の最小公倍数24の倍数である。 100以下の自然数で、24の倍数であるのは、24、48、72、96であるから、Nは23、47、71、95の4個である。 とのことなのですが、何故(1)の辺々に1を加えたのかが分かりません。 どなたかご教授お願いします。

  • 素数は無限に多く存在することの証明(ユークリッドの別証)を二つの添削

    ユークリッドの証明は背理法を用いた証明。 素数を有限個とするならその最大素数をpnとして素数を小さい順にp1,p2,…,pnとした時 N=p1*p2*p3*…pn + 1 全ての自然数は素因数に分解できるのでp1~pnの少なくとも一つ因数に持つはずだが、どれで割っても1あまる。これはpnが最大の素数であることに矛盾 素数は無限に存在する。 といった証明。今回はこれの別称として以下の漸化式を用いたものを解けという問題です。 ◆a_{n}:=2^(2^n) + 1, n=1,2,3,… を用いた証明 この時任意のm≠nに対しa_{m}, a_{n}は互いに素である。実際n>mの時 a_{n} - 2 = 2^(2^n) - 1     ={2^2^(n-1) + 1}{2^2^(n-1) - 1}     =a_{n-1}*(a_{n-1} - 2)     =a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 2) となるのでa_{m},a_{n}の公約数dは2の約数でなければならない。他方a_{m},a_{n}は奇数であるから(←漸化式より)d=1となる。すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ ◆正整数の列a_nを次のように定める a_{n+1} = a_{n}*(a_{n} - 1) + 1, a_{1} = 2 これを用いて素数が無限であることを示すのですが 任意のm≠nに対して a_{n} - 1 = a_{n-1}*(a_{n-1} - 1)       = a_{n-1}*a_{n-2}*(a_{n-2} - 1)       = a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 1) よりa_{n},a_{m}の公約数は1の約数でなければならない。よってa_{n},a_{m}は互いに素である。 すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ これら2つの証明はこれであっているでしょうか?

  • 7で割ると3余り、11で割ると4余る3ケタの自然数は何個あるか。

    7で割ると3余り、11で割ると4余る3ケタの自然数は何個あるか。 という問題で、 N=7m+3=11k+4とおいて、 m=(11k+1)/7  =k+(4k+1)/7 より、4k+1=7n k=(7n-1)/4 を代入して、 N=11{(7n-1)/4}+4  =(77n+5)/4 100≦N<1000より 100≦(77n+5)/4<1000 6≦n≦51 51-6+1=46個? となりました。 でも正解は12個でした。 知っている他のやり方でこの問題をすると、 7m+3=11k+4 7m=11k+1…(1) の一例を考えて入れてみて、 7*8=11*5+1…(2) (1)-(2)より、 7(m-8)=11(k-5) 7と11は互いに素であるので、 m-8=11nより m=11n+8 これをNの式に代入して、 N=77n+59 100≦77n+59<1000 1≦n≦12 ∴12個 となり、正解にたどりつけました。最初の方法でなぜ正解にたどりつけなかったのかがわかりません。何か条件を忘れているのでしょうか。2つのやり方の違い、最初のやり方の不足点を教えてください。

  • 自然数を求める問題

    <問題> 2^n-2^m=12を満たす自然数m,nを求めよ 解説に、n≧5のとき2^n-2^m=12を満たす自然数m,nは存在しないと書いてあります。 なぜでしょうか?

  • nから2nの間に奇素数が全く存在しない区間があるとすると,

    nから2nの間に奇素数が全く存在しない区間があるとすると, それは,どの様なnになりますか? ただし,nは正の整数です. 無限に近い非常に大きな自然数列の中に,奇素数が全く存在しない膨大な区間があるといわれます.しかも,その区間は,幾らでも大きく取れると聞いたことがあります.そこで,上記の質問がでたわけです. 一応,この質問を命題の形に書いておきます. (1) n を正の整数とする.n=1, 2, 3, ・・・.     n∈N(自然数全体の集合) (2) m を正の整数とし,m は n<m<2n を満たすとする. (3) 集合A(n)を以下のように定義する.nを或る値に固定した時,      A(n)={ m | m,n∈N, n<m<2n} A(n) の 元 m∈A(n) は,m=n+1,n+2, n+3,・・・  ・・・ 2n-2,2n-1 となる. ●命題:集合A(n)の全ての元 m∈A(n)が奇素数でないような,十分大きな正の整数nが存在する. この命題は,成り立つでしょうか? 成り立たないでしょうか? ご教授下さい.また,単なるご意見でもかまいませんので,お寄せ下さい. (参考):仮に,n=10 とすると,10 と 20 との間には,奇素数 11, 13, 17, 19 が存在します.n=23 とすれば,46 との間には,奇素数 29, 31, 37, 41, 43 が存在します.この様にならない十分大きなnが存在するでしょうか? と言うのが,質問の趣旨です.

  • 奇素数に自然数の番号を付与することについて.

    奇素数に自然数の番号を付与することについて. 奇素数 3,5,7,11,13,17,・・・・・ に対して, 順番に 1,2,3, 4, 5, 6,・・・・・ と番号を以下のように付けます. 奇素数 3   5  7  11  13  17 ・・・・・     ↑  ↑  ↑  ↑  ↑  ↑   番号 1   2  3   4   5   6 ・・・・・ 念のため,タテに書きますと, 奇素数  番号 ↓    ↓  3 ← 1  5 ← 2  7 ← 3 11 ← 4 13 ← 5 17 ← 6 ・・・・・・ p ← m ・・・・・・ こうすると,任意の奇素数 p には m という自然数が対応し,かつ, 任意の自然数 n には,奇素数 q が必ず対応します.すると, 奇素数の集合P={ 3,5,7,11,13,17 ・・・ } と 自然数の集合N={ 1,2,3,4,5,6 ・・・ } は, 1対1の対応がとれ,全単射となる写像が存在することになります. ここで,質問ですが,上記のような対応に対する数学的な理論が何か,ありますか? ピエール・デザルト (Pierre Dusart) の研究結果として, p(n)をn番目の素数とすると n ≧ 6 に対して,  n・ln(n) + n・ln{ln(n)} -n <p(n)<n・ln(n) + n・ln{ln(n)} が成り立つ.というものがありますが, これ以外に,何かあれば教えて下さい.

  • 「3桁の自然数」 →0は自然数?

    百の位、十の位、一の位のうち、いずれかは偶数であるような3桁の自然数の中で、各位の数の和が奇数であるものは幾つあるか。 模範解答 百の位、十の位、一の位のうち、1つの位だけが奇数で、他の2つの位は偶数である。 そのような場合には、次の[1]~[3]がある。 [1] 一の位が奇数、他の位が偶数のものについて 百の位は2, 4, 6, 8の4通り 十の位は0, 2, 4, 6, 8の5通り     ←0??? 一の位は1, 3, 5, 7. 9の5通り よって、4×5×5=100個 [2]  : ・・・と続くのですが、 こういう類の問題で「3桁の自然数」と言った場合、 その範囲は100~999ですか? 最上位の位以外なら0が含まれていてもいいんですか? 自然数の定義は「0を含まない」ですよね? ←確認 ですから、「3桁の自然数」と言った場合、 それぞれの位は1~9までの数で構成されるべきじゃないんですか? 特に今回は、それぞれの位が偶数か奇数かという話をしているので 各位も自然数なのかと思いました。 100や510が自然数なのは承知しています。 でも、この問題の書き方が曖昧に思えてなりません。 どうか私を納得させて次から間違えないようにさせて下さい。お願いします。

  • nを自然数とするとき、n

    nを自然数とするとき、n^5とnの1の位の数は一致することを示せ。