• 締切済み
  • すぐに回答を!

数学II 三角関数の問題について

数学でどうしても分からない問題があったので質問させていただきます。 関数f(θ)=sin2θ+2(sinθ+cosθ)-1を考える。ただし、0≦θ≦πとする。 (1)f=sinθ+cosθとおくとき、f(θ)をtの式で表せ。(答え:t^2+2t-2) (2)tのとりうる値の範囲を求めよ。 (解)t=sinθ+cosθ=√2sin(θ+π/4)    0≦θ≦πであるから、π/4≦θ+π/4≦5/4π    ゆえに-1≦t≦√2 (解)の下から2番目の行から一番最後の行の過程がよく分かりません。 なぜπ/4≦θ+π/4≦5/4πだと-1≦t≦√2になるのでしょうか。 他の問題も参考にしたり教科書で調べたりしましたがどうしても分かりませんでした。 回答よろしくお願いします。

noname#153499

共感・応援の気持ちを伝えよう!

  • 回答数5
  • 閲覧数257
  • ありがとう数5

みんなの回答

  • 回答No.5
noname#157574

単位円をかいて変域に注意すればtの値は求まります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。 単位円でもやってみます。

関連するQ&A

  • 三角関数の問題です。

    三角関数の問題です。 cos3θ+sin2θ+cosθ>0を満たすθの範囲を求めよ。ただし、0≦θ<2πとする。 という問題です。次の様に解答したのですが、間違いや、つっこまれそうな所があったら指摘して下さると助かります。 cos3θ=4cos^3θ-3cosθより、 cos3θ+sin2θ+cosθ=4cos^3θ-3cosθ+2sinθcosθ+cosθ =cosθ(4cos^2θ+2sinθ-2)=cosθ{4(1-sin^2θ)+2sinθ-2} =cosθ(-4sin^2θ+2sinθ+2)=-2cosθ(2sinθ+1)(sinθ-1)>0 ∴cosθ(2sinθ+1)(sinθ-1)<0 (1)cosθ>0のとき、(2sinθ+1)(sinθ-1)は負 2sinθ+1>0, sinθ-1<0 のとき、これを満たすθの範囲は、0≦θ<π/2,11/6π<θ<2π 2sinθ+1<0, sinθ-1>0 のとき、これを満たすθは存在しない。 (2)cosθ<0のとき、(2sinθ+1)(sinθ-1)は正 2sinθ+1>0, sinθ-1>0 のとき、これを満たすθは存在しない。 2sinθ+1<0, sinθ-1<0 のとき、これを満たすθの範囲は、7/6π<θ<3/2π (1),(2)から、求めるθの範囲は、0≦θ<π/2,7/6π<θ<3/2π,11/6π<θ<2π 宜しくお願いします。

  • 三角関数について

    関数f(θ)=sin2θ-a(sinθ+cosθ)+2とする。 また、t=sinθ+cosθ,0≦θ≦πとする。 1.f(θ)の最小値m(a)を求めよ 2.f(θ)>0が0≦θ≦πで常に成立するような定数aを求めよ。 解法を教えてください。

  • 三角関数の合成

    三角関数の合成 π/6≦θ≦5/6πのとき、sin{2θ-(π/6)}-cos2θ の最大値と最小値を求めよと言う問題があります。 この式が √3/2 sin2θ-3/2 cos2θ という式になるのはわかりました。でもここからどのようにして合成するのでしょうか? 三角関数の合成の式が√(a^2+b^2) sin(θ+α) なので√3 sin(2θ+α) になるのはわかるのですがどうやってαの部分を出すのかわかりません… 図を書いて求めようとしたのですがさっぱりで… どなたか教えてください。よろしくお願いしますm(__)m

  • 回答No.4

x = θ+π/4と置くと 0≦θ≦π → π/4≦x≦5/4π √2sin(θ+π/4) = √2sinx (a) で、(a)のグラフを書くと分かりますよ。 ちなみに、(a)は x=(5/4)πの時が最小で -1 (∵sin(5/4π) = -1/√2) x=π/2の時が最大で √2 (∵sin(π/2) = 1)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。 グラフでもできるんですね。

  • 回答No.3
  • yyssaa
  • ベストアンサー率50% (747/1465)

なぜπ/4≦θ+π/4≦5/4πだと-1≦t≦√2になるのでしょうか。 >θ+π/4=5/4πでt=√2sin(θ+π/4)=-1 θ+π/4=1/2πでt=√2sin(θ+π/4)=√2です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

それは、π/4 ≦ x ≦ (5/4)π のとき -1/√2 ≦ sin x ≦ 1 であることが 解らないということだろうか。 y = sin x のグラフを思い出してみてはどうか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。

  • 回答No.1

π/4≦θ+π/4≦5/4πを変域として t=sinθ+cosθ=√2sin(θ+π/4) のグラフを描けば一目瞭然です。 グラフを描けないのであればこの問題を解く資格はありません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。

関連するQ&A

  • 三角関数の問題

    三角関数の問題  「(1-conθ)/sinθ+(1-sinθ)/conθ の最大値、最小値を求めよ   ただし 0<θ<π/2」 という問題なのですが、式を変換して  (sinθ+cosθ-1)/sinθcosθ となって、三角関数の合成と二倍角の公式で  { 2√2sin(θ+π/4)+2 }/sin2θ となりましたがそこから先が分かりません。合成などしなくて良いのでしょうか。誰かヒントをください!!!

  • 数学II【三角関数】

    下の問題の導き方がわかりません。 sinθ+cosθ から sinθcosθ の求め方はわかるのですが、sinθcosθ から sinθ+cosθ を解くことがどうしてもできません。sinθ+cosθ から sinθcosθ の導き方の逆からやってみたのですがそれでも解くことができませんでした。なのでわかる方がいれば導き方を教えて下さいお願いします。 《問題》 sinθcosθ=-1/4 のとき次の式の値を求めよ。ただし、π/2<θ<πとする。 sinθ+cosθ

  • 三角関数の問題です

    三角関数の問題です。0を原点とする座標平面において、2点P、QをP(cosΘ,sinΘ),Q(√3sin2Θ,√3cos2Θ)とする。ただし0<Θ<π/2とする。 sin2Θ=cos(π/2―2Θ),cos2Θ=sin(π/2―2Θ)であるから、3点0、P、Q が同一直線上にあるのはΘ=π/□の時である。 □の求め方がわかりません。どなたか教えてください。宜しくお願いします。

  • 三角関数の問題です

    問題がわかりません。教えていただくと助かります。 2cos^2θ-√3 sin2θ-(2a+1)(√3 cosθ-sinθ-1)=0 …(1) を考える。ただし、0≦θ<2π とする。 t=cos (θ+π/6) とおくと 4t^2=アcos^2θ-√イ sin2θ+ ウ であるから。(1)は t^2-(エ+オ/カ)t+ キ/ク = 0 a=3 のとき(1)の解は θ=π/ケ または コ / サ π である。 また、a=シ または スセ のとき(1)は 0≦θ<2π の範囲に3個の解をもつ。 (1)をどう、展開していけばいいのか教えて下さい。 よろしくお願いします。

  • 三角関数について

    三角関数について f(θ)=cos^2+2/3√3sinθcosθ-sin^2 f(θ)=√3/3sin2θ+cos2θ =2√3/3sin(2θ+60°) (1)f(135°)=-√3/3であり、角α(0°≦α≦90°)がf(α)=f(135°)を満たすならα=75°である。 という問題があるのですが、(1)がわかりません。 詳しく解説していただけると有り難いです。

  • 三角関数

    先程は失礼しました。 y=3(sinx)^2+4sinxcosx-(cosx)^2 が y=3* (1-cos2x)/2 + 2sin2x - (1+cos2x)/2 になる過程がよく分かりません。 sin2x-cos2x=√2sin(2x- π/4)  となる過程もよく分かりません。 sin2x+cos2X  だったらどうなるのでしょうか。

  • 三角関数 教えてください

    三角関数の問題を解いているのですが、途中からわかりません。 &#8895;ABCは、3辺の長さがAB=sinθ、BC=cos2θ、CA=cosθ、 ∠BAC=π/3の三角形である。ただし、0<θ<π/4である。 余弦定理を用いてθの値を求めなさい。 BC^2=AB^2+CA^2&#65293;2AB×CAcosA に代入していく。 cos^22θ=sin^2θ+cos^2θ&#65293;2・sinθ・cosθ・(1/2)  sin^2θ+cos^2θ=1より、 cos^22θ=1&#65293;sinθ・cosθ  sin^22θ+cos^22θ=1より、 1&#65293;sin^22θ=1&#65293;(1/2)sin2θ←ここがわかりません。 sin^22θ+cos^22θ=1 を使って左辺はわかったのですが、右辺がなぜこうなったのか全くわかりません。 計算の過程をお願いします。

  • 三角関数について

    θの関数  f(θ)=sin2θcosθ+cos2θ-1   (0≦θ<2π) とする。 x=sinθ,y=(θ)とおくと, y=-2x^3-2x^2+2xと表せる。 とありますが、加法定理で解こうと思ってもうまくまとめれなくて解けませんでした。 どのように解けばいいのですか。 また添付画像の問題(特にエオカキ)も解説していただれば嬉しいです。

  • 三角関数

    (cos2x+sin2x+1)/cos2xsin2x 0<x<π/4の最小値についてですが、図形的に2x=π/4の時だろうというのはわかるのですが、微分しないで求まらないでしょうか?自分はtanxのみの式にしてもうまくいきませんでした。よろしくお願いします。

  • 三角関数の問題がわかりません・・・

    三角関数の問題がわかりません・・・ 関数f(θ)=6sinθcosθ-8sin^3θcosθ+2cos^2θ-1について、 (1)sin2θ+cos2θ=tとおくとき、tのとりうる値の範囲を求めよ。 (2)f(θ)をtを用いて表せ。 (3)f(θ)の最大値を求めよ。 という問題なのですが、 丸投げな質問ですみません。ですが問題がさっぱり?で解こうにも解けませんでした。 この問題のヒントとして (2)は f(θ)=sin2θ+cos2θ+2sin2θcos2θ と書いてあったのですがこれも?でした。どうか解き方を教えてください。お願いします!