• ベストアンサー

複素関数の積分の問題です.

r > 0について、線分 C : z = ( 2r - t ) + it   ( 0 ≦ t ≦ r ) とおくとき、 r→∞のとき、下の画像の式が成り立つことを証明をせよ. という問題で解答をみると 「C 上でe^-(z^2)の絶対値がe^(4rt-4r^2)であることを用いよ」と書いてありました. 私はe^(4rt-4r^2)が0になるのだろうと思いましたが t=rのときe^(4rt-4r^2)は1になり画像の式は正しくないように思うのですが. ちなみに、eはネイピア数です.

質問者が選んだベストアンサー

  • ベストアンサー
  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.1

「t=rのときe^(4rt-4r^2)は1に」なったところで、それがどうしたというんでしょうか。問題は∫[t=0~r]e^(4rt-4r^2)dtがどうなるか、なんですよ? 簡単な積分です。計算するだけ。 z(t)=(2r-t)+it と書くと、問題の積分J(r)は J(r) = ∫[t=0~r]e^(-(z(t)^2))dt である。また、 |J(r)| ≦ ∫[t=0~r]|e^(-(z(t)^2))|dt である。 |e^(-(z(t)^2))|=e^(4rt-4r^2) である(と信じる事にして、だ)から r→∞のときに ∫[t=0~r]e^(4rt-4r^2)dt→0であれば、r→∞で|J(r)| →0となる、という話です。

1123_5
質問者

お礼

別の問題での解法にとらわれて問題の解き方を見失ってました. このような質問に回答していただきありがとうございます.

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 複素積分

     Cauchyの積分定理の応用に関する問題(Fresnel積分)に関してですが、テキストなどでは、積分路を扇にとって積分していますが、これを二等辺三角形にして考えています。  まずf(z)=e^(iz^2)として、積分路Cを0,R,(1+i)Rを頂点とする直角二等辺三角形の周とします。ここで、C上の積分∫f(z)dxを考えて、Fresnel積分を導きたいのですが、一部積分評価がわからないところがあり、質問させていただきました。  積分路CをC1(0→R)、C2(R→(1+i)R)、C1((1+i)R→0)、として考え、各積分路の積分をI1,I2,I3とすると、Cauchyの積分定理より、   ∫f(z)dx=I1+I2-I3=0 となり、I1,I3については問題ないのですが、I2の積分評価がうまくできません。  C2をパラメータtを用いて、z=R+it,(0≦t≦R)とすれば、   I2=i∫[0,R] e^(i(R+it)^2) dt    =i∫[0,R] e^{i(R^2-t^2)-2Rt} dt  ----(*) となり、(*)式の積分評価がよくわかりません。R→∞としたとき、I2→0となるのですが、どうやって導いたらよいのでしょうか?どなたか教えていただけないでしょうか?できれば、詳しく教えていただけると大変助かります。  大変読みづらいかもしれませんが、よろしくお願いします。

  • 複素関数 証明問題

    C: Re^it (0 ≦ t ≦ π) | f (z) | ≦ 1/R (f ( z ) は C で正則とする) であるとき, |∫[- R → R] f ( x ) dx | ≦ πの証明 のやり方について教えて下さい. C2: t (-R ≦ t ≦ R)として, 閉曲線C + C2 を考えると思うのですが, f ( z ) をどのように考えるかが分かりません. よろしくお願いします.

  • 複素関数の問題

    複素関数の問題 複素平面上の点A(1),B(i)を結んだ線分AB上をzが動くとき,w=z^2+2zはどのような図形上を動くか?(zは複素関数,iは虚数)という問題で,z=1-t+it (0≦t≦1,t∈R) とパラメータtでzを置いたり,w+1=(z+1)^2としてみたりしたのですが,どのような図形上を動くのかがわかりません. どなたか教えていただけないでしょうか??

  • 複素解析の問題

    線分z=t*e^(π/4*i) (0≦t≦r)にそった ∫_C e^(-z^2)dzの積分の実部を、cos(t^2)とsin(t^2)を使って表せ この問題の答えは 1/√2(∫[0,r] cos(t^2)+sin(t^2) dt) で合っていますか?

  • 複素関数の問題の解答解説を教えてください。

    複素関数の問題の解答解説を教えてください。 f(z)は正則でf(1) = 2(1 + i), f(-it) = f(it)および∫[0→2]f(it)/((t^2)+1) dt = πi を満たすとする。 c ∶ z = 2e^(iθ) (-π/2≤ θ ≤π/2) とするとき∫c f(z)/((z^2)-1) dz を計算しろ お願いします。

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • 複素積分

    複素積分の問題です。 ∫z*cos(z)dz 積分路:|z-i/2|=1/2のRez≦0の部分をiから0の向き z(t)=1/2cos(t)+(1/2)*i*(sin(t)+1/2)、t∈[π/2,3π/2]で変換して z(t)=(e^it)/2+i/4として代入してみると ∫{(e^it)/2+i/4}cos{(e^it)+i/4}*{i(e^it)/2}dt 積分範囲はt:π/2→3π/2 となりました。 この積分の計算がなかなかうまくいかず行き詰ってしまって困っています。 そもそも方針は合っているのでしょうか…? どなたかわかる方おられましたら回答お願いいたします。

  • 複素積分について

    関数f(z)およびCについて、複素積分∫Cf(z)dzを求める f(z)=z^2、C:z=z(t)=(1+i)t (0≦t≦1) f(z)=e^z、C:z=z(θ)=2e^(iθ) (0≦θ≦π) どのようになりますか

  • 複素関数の問題です。

    方程式を解けという問題です。解答、途中式、解説詳しく教えてほしいです。 御回答よろしくお願いします。 (1) e^3z + (i - √3)e^z = 0 (2) sin(z) = 2i

このQ&Aのポイント
  • 「お気に入り」リストの「印刷」をクリックしてやっていたが表示が消えてしまい復元できないで困っています。
  • パソコンのOSはWindows10で、有線LANで接続しています。
  • 関連するソフト・アプリはありません。
回答を見る