複素関数を使った積分値の求め方

このQ&Aのポイント
  • 複素関数を使って実変数に対する積分値を求める方法について説明します。
  • 上記の積分範囲を正しく設定することで、被積分関数が0にならずに正しい値を求めることができます。
  • 解答に誤りがある場合は、積分範囲や変数変換の方法を見直してみてください。
回答を見る
  • ベストアンサー

積分値を複素関数を使って求める

お世話になります。 【問題】 実変数θに対する下記の積分値を、複素関数を使って求めよ。 ∫[ 0 → 2π ]1 / ( 5 - 3cosθ )^2 dθ 【自分の解答】 オイラーの公式より cosθ = ( exp( iθ) + exp( -iθ ) ) / 2 これを与式に代入して ∫[ 0 → 2π ]1 / ( 5 - 3 ( exp( iθ) + exp( -iθ ) ) / 2 )^2 dθ = (*) ここで z = exp( iθ) + exp( -iθ ) とおくと dθ/ dz = 1 / (dz / dθ) = 1 / iz ∴dθ= ( 1 / iz )dz また θ:0 → 2π z :2 → 2 よって (*) = ∫[2 → 2]1 / ( 5 - 3z / 2 )^2 ( 1 / iz )dz (ここから不明) 【質問】 上記のやり方では積分範囲が2 → 2となり被積分関数がどんなものであろうとその積分値は0になってしまいます。 私の解答は間違っていると思うのですが、何が間違っているのか、どうすれば正しくなるのかがわかりません。 どなたかご教授よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.2

#1です。 ヒント)複素積分でやる場合の骨子だけ 定石通りの置換で z=tan(θ/2)とおくと dθ=2dz/(1+z^2) 積分をIとおくと I=∫[0→∞](1+z^2)/(1+4z^2)^2dz =(1/2)∫[-∞→∞](1+z^2)/(1+4z^2)^2dz 積分経路Cを複素平面の上半平面を反時計回りに変換して =(1/2)∫c (1+z^2)/(1+4z^2)^2dz z=i/2の留数を計算して =(1/2)2πi*Res((1+z^2)/(1+4z^2)^2,z=i/2) =5π/32 変形の途中は自力でやってみて確認して下さい。

その他の回答 (1)

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.1

> z = exp( iθ) + exp( -iθ ) > とおくと > dθ/ dz = 1 / (dz / dθ) = 1 / iz ここで間違っています。確認してください。 積分は数学ソフトでは I=2∫[0→π] 1/(5-3cos(θ))dθ=5π/32 となりました。

関連するQ&A

  • 複素積分

    複素関数f(z)を、   f(z)=(1-e^(2iz))/z^2 (zはC/{0}の元) とします。 (1)z=0におけるローラン展開 (2)R>0に対して、上半円弧CrをCr={z=Re^(iθ) : 0≦θ≦π}とし、   反時計回りに向きを入れるとき、    lim[R→∞] ∫[Cr] f(z)dz という上記の二問についてですが、 (1)について  e^zのテイラー展開にz=2izを代入し   f(z)=(1/z^2){1-(1+z+(z^2)/2!+…}   =-Σ[n=1→∞] (((2i)^n)z^(n-2))/n!  と強引に計算しましたが、これで大丈夫なのでしょうか? (2)について  z=Re^(iθ)を与式に直接代入して、    lim[R→∞] ∫[Cr] f(z)dz    =lim[R→∞] ∫[0,π] {1-e^(2iRe^(iθ))}/{Re^(iθ)} dθ  として、ここから積分評価をしていきたいのですが、どのようにして考えていけばよいのでしょうか?とりあえず、被積分関数の絶対値を考えてみたのですが、うまくいきません。どなたかアドバイスをいただけませんか? 以上の二問ですが、よろしくお願いします。

  • 【複素積分】0→πについて

    ∫[0,π] d/(d+acosθ)dθ (d>a>0) の計算なのですが、 複素数に拡張して考えました。 z=e^izとおき、オイラーの公式をつかって z(z:1→-1)に変数変換し、留数定理を用いて計算しました。 その結果、-2πd/√(d^2-a^2)となり、解答の2倍に なってしまいました。 良く考えてみれば、私が複素平面上に 上反面の半円の経路で積分したことが まずかったのかもしれない、と思っているのですが、 円を考えると、それはそれで積分ができません。 解き方が分からず困っています... どなたか数学に詳しい方、よろしくお願い致します。

  • 複素積分の解き方がわかりません

    円周 |z - 1| = 1 上で反時計回りに複素積分を行い、 ∫( z^n / (z - 1)^n )dz の値を求めよという問題がわかりません。 |z - 1| = 1より、 C : z = 1 + exp(iθ) であり、線積分の公式 ∫{C} f(z)dz = ∫{a→b} f(z(t))z'(t) dt (ただし、{}は積分範囲) という公式を当てはめると、 ∫{π→0} ( (1 + exp(iθ))^n/(exp(iθ))^n ) × iexp(iθ) dθ と考えたのですが、この積分を解くことができません。それとも、それ以前で間違えているのでしょうか? わかる人がいれば詳しく教えていただけるとありがたいです。回答よろしくお願いします。

  • 複素積分の問題

    複素積分の問題  複素関数の勉強をしている者なのですが、  ∫(3z-4z^3)/(2z-1)^4 dz (積分範囲は|z|=1 ) の解き方が分かりません。解答によると答えは -πi/2 です。 分かる方できるだけ詳しく解説をお願いします。 

  • 複素積分

    下記の複素積分に関する問題がわかりません。 積分路Cは原点を中心とする半径1の円周上とする。 ∫c(z^2+1)/(-4iz^3+17iz^2-4iz)dz また、複素積分の基礎的な知識を確認するのに何かよいサイトがありましたら教えて頂けませんか。

  • 複素積分

    複素積分の問題です。 ∫z*cos(z)dz 積分路:|z-i/2|=1/2のRez≦0の部分をiから0の向き z(t)=1/2cos(t)+(1/2)*i*(sin(t)+1/2)、t∈[π/2,3π/2]で変換して z(t)=(e^it)/2+i/4として代入してみると ∫{(e^it)/2+i/4}cos{(e^it)+i/4}*{i(e^it)/2}dt 積分範囲はt:π/2→3π/2 となりました。 この積分の計算がなかなかうまくいかず行き詰ってしまって困っています。 そもそも方針は合っているのでしょうか…? どなたかわかる方おられましたら回答お願いいたします。

  • 複素積分

    f(x)=1/(2+cos(x))の複素フーリエ係数c_nを求める過程で、 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x))を計算したいのですが途中で行き詰まってしまったので指南のほどをお願いします。 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x)) =∫_[0<x<2π]exp(-ni(x-π))/(2-cos(x))  積分範囲の変換 =2i∫_[周回積分]z^(-n)cos(nπ)dz/(z^2-4z+1)    z=exp(ix)と置いて置換 ここからnが奇数と偶数の場合に分けて計算しようと考えたのですが、どうしたらよいかわかりません。 よろしくお願いします。

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。

  • 複素積分の初歩的な質問

    以下のような問題についてなのですが。。。 問 複素平面z上の単連結領域 -1<Imz<1 で、次の z=-1 から 1 までの 定積分を求めよ。 ∫[-1,1]1/(z-i)dz (被積分関数が 1/(z-i),積分範囲が[-1,1]) 僕は実数関数のノリで [log|z-i|]を原始関数としてやり答えが0になってしまったのですが 解答を見ると以下のようにやっています。 積分経路を z-i = √2*exp(iθ) (-3pi/4 <= θ <= -pi/4) としてあとは普通に積分。(答えは(pi*i)/2) つまり -1<Imz<1,-1<=Rez<=1 の範囲で被積分関数は 正則だからコーシーの積分定理より経路を変えても積分値は同じ、 -1から1へまっすぐ積分するのではなく扇形の弧を描くように 積分するということです(と思います)。 で、模範解答のやり方はそれはそれでよく納得できたのですが 僕が最初にやったやり方はなにが不味いのでしょうか。 そもそも原始関数がlog|z-i|がおかしいのでしょうか? この公式(∫f(x)'/f(x) dx = log|f(x)|)は複素数の範囲だと 成り立たない公式なのでしょうか? 複素関数の積分で被積分関数が特異点を持つときは exp(iθ)を絡ませるのが常套手段なのでしょうか? よろしくお願いいたします!

  • 複素積分

    I1=∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxを複素積分を使って求めます。 まず ∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxの被積分関数の分子にi*sin(a*x)を (iは虚数単位)を加えても加えた部分が奇関数でかわらないので加え ると ∫[-∞,-∞]{cos(a*x)+i*sin(a*x)}/(x^2+b^2)dxとなります するとI=∫[-∞,-∞]exp(i*a*x)/(x^2+b^2)dxです。 ここで複素積分 I=∫exp(i*a*z)/(z^2+b^2)dz (積分路は実軸と虚軸の正の部分を通る 反時計回りの半径Rの半円) またI2=∫exp(i*a*z)/(z^2+b^2)dz (積分路は虚軸の正の部分のみを通 る反時計回りの半径Rの半円)を考えるとRが十分大きいとき I=I1+I2・・・(1)になります。 Iは留数定理よりI=2*π*i*Res[f,i*b]=π*exp(-a*b)/b・・・(2) I2はz=R*exp(i*θ)とおき I2=∫[0,π]exp(i*a*R*exp(i*θ))/(R*exp(i*θ)^2+b^2)dθ =∫[0,π]exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)/(R^2*exp (2*i*θ)+b^2)dθ 三角不等式より 0<|I2|<∫[0,π]|exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)|/|(R^2*exp(2*i*θ)+b^2)|dθ<π*R*exp(-a*R*sinθ)/|-R^2+b^2|・・・(3) ここでsinθ >0よりでexp(-a*R*sinθ)<1なので π*R*exp(-a*R*sinθ)/|-R^2+b^2|<π*R/|-R^2+b^2|となり π*R/|-R^2+b^2|はR-->∞で0なので結局 |I2|-->0   なので(1)より I1=π*exp(-a*b)/bが答えです。  これはわかるのですが、スタートで i*sin(a*x)ではなく-i*sin(a*x)を加えても変わらないですよね? そこで-i*sin(a*x)を加えて実際にやってみると (2)の部分はπ*exp(a*b)/bに変わってしまい、また (3)の部分はπ*R*exp(a*R*sinθ)/|-R^2+b^2|となってしまいこれでは R-->∞で発散するように思えます。 どこがまちがっているのでしょうか