• ベストアンサー

有界についての論理式の問に困ってます。

問い(2) A⊂R(A≠∅)は上に有界とする。;∃a₀R;x≦a₀,∀x∊A…(1) その時、(1)と次の(2)が同等であることを示せ。 ∀ε>0,∃a∊A; a₀-ε≺ a…(2)  上限の定義として、(1)(2)はセットですが、どのように示すのでしょうか? ∀a∊Aとして、x= a-εとして、(1)に当てはめても、(2)の形とは違うものになってしまいました。  よろしくお願いします。

  • ga2z
  • お礼率2% (3/104)

質問者が選んだベストアンサー

  • ベストアンサー
  • sub_6
  • ベストアンサー率60% (14/23)
回答No.1

(1) はAの上界a0の存在を、 (2)は a0 にいくらでも近い A の元 a が取れることを言っています。 (2)の式そのものはAが稠密であればa0 は上界でなくてもかまいません。 実数集合 R のもとで、A = Q とし、a0 = π をとれば(2)は満たしますが、(1)はみたしません。というわけで、論理式だけ見た場合、同等性は成り立たないはずです。 --------------------------------- わたしは、主さんの問いが、実数の部分集合が上に有界であることと、上限を持つことが等しいことをどう示すかであると推測します。 そのときは参考URLを見てください。

参考URL:
http://sss.sci.ibaraki.ac.jp/teaching/set/set5.pdf

関連するQ&A

  • 有界についての論理式の問に困ってます。お願いします

    問い A⊂R(A≠∅)は上に有界とする。;∃a₀R;x≦a₀,∀x∊A その時、(1)と次の(2)の主張が同等であることを示せ。 ∀ε>0,∃a∊A; a₀-ε≺ a…(1) ∃{an}⊂A;an→a₀(n→∞)・・・(2) (2)→(1)を示す際、εn論法を用いて、示すのでしょうか?どのように解答するのか教えてください。

  • 有界閉集合の重心

    R^nの有界(閉)集合Bの重心は次の式を満たすgということでいいでしょうか?  ∫(x∈B)(x-g)dμ(R^n) このとき、Bが有界と言う条件からgの一意性が成り立つのでしょうか? また、f:B→Rの可測関数とするとfの重心を {(x,y)|x∈B,y∈f(B)}⊆R^(n+1)の重心として定義されるでしょうか?

  • 収束 と 有界 について

    Gelfand-Mazurの定理の証明での途中で A:バナッハ体 x∈A λ:複素数 x(λ)=(x-λ)^(-1) <リゾルベント> (複素平面で定義されていてB環の元を価とする関数) ∥x(λ)∥=∥(x-λ)^(-1)∥=1/|λ|・∥(x/λ-1)^(-1)∥ λ→∞ →0・1=0 とあったのですが、1/|λ|が0に収束するのはわかるのですが、 ∥(x/λ-1)^(-1)∥が1に収束すると言う証明の仕方がわかりません。 考えればあたりまえなのですが、それをちゃんと式で証明すると言うのができずにもやもやしています。 また、上式からx(λ)が有界であるという結果を導けますが、 なぜ有界といえるのでしょうか。 収束する数列は有界というのがありますが、それは実数での話なので複素数となった時はどういう考え方をすればよいのかわかりません。 詳しく教えていただけると嬉しいですが、 こうやってみては?というアドバイスだけでも、何をどうしてよいのかわからない状態なので嬉しいです。 宜しくお願い致します。

  • 有界

    有界がいまいちわからないので再度質問させていただきます。 f=1/xは、lim_(x→0)で無限大に接近するので有界ではないけれどていぎいきをx<-1,1<xなどとすれば有界ですよね? ではf(x)=x^3やf(x)=e^xなどは有界なのでしょうか? f(x)=e^xやf(x)=x^2は下に有界というのであってますか?上はどうなのでしょうか? 

  • この場合,Cauchy列が有界となる理由は?

    宜しくお願い致します。 最下の命題の証明でCauchy列が有界となる理由がわかりません。 [定義-3]順序集合(A,≦')の部分集合Bに於いて、{b∈B ;∀x∈B,b≦'x}≠φの時、 {b∈B;∀x∈B,b≦'x}:単集合となる{b∈B ;∀x∈B,b≦'x}のただ一つの元bをminBと表記し、(A,≦')に於けるBの最小元と言う。 [定義-2]順序集合(A,≦')の部分集合Bに於いて、{a∈A ;∀x∈B,x≦'a}≠φの時、 {a∈A ;x∈B⇒x≦'a}の元を(A,≦')に於けるBの上界と言う。 [定義-1] 順序集合(A,≦')に於いて、Aの部分集合Bに於ける上界が存在する時、Bは(A,≦')の中で上に有界であると言う。 [定義0] 順序集合(A,≦')に於いて、Aの部分集合Bに於ける上界が存在する時、その上界の集合の最小限をBの上限といい,supBと書く。 [定義1] 数列{a_n}のある部分列がaに収束する時,このaを数列{a_n}の集積値という。 [定義2] 順序集合(A,≦')が完備 ⇔ (i) (A⊃)Bが上に有界ならば∃supB∈A (ii) (A⊃)Bが下に有界ならば∃infB∈A [命題1](Weierstrassの定理) 有界な数列には少なくとも1つの集積値が存在する。 [命題2] 数列{a_n}が収束する ⇔ (i) {a_n}が有界 (ii) {a_n}の集積値は唯一つ [命題3] 順序集合(A,≦')を距離空間(その距離をdとする)とする。Aが完備ならばAの任意のCauchy列{c_n}はlim[n→∞]c_n∈A. を示しています。 [証] Cauchy列の定義から0<∀ε∈R,∃M∈N;M<m,n∈N⇒d(c_m,c_n)<ε {c_n}は有界(∵?)。 従って,sup{c_n}∈A,inf{c_n}∈A(∵定義2) これから{c_n}は有界と言えるから,{c_n}は収束する (∵唯1つの集積値が存在する (∵{c_n}には少なくとも1つの集積値が存在するから(命題1), {c_n}の集積値が2つあったと仮定し,その集積値をa,bとする。 {c_n}の部分列{a_n}がaに収束,部分列{b_n}がbに収束。 収束の定義から夫々 0<ε'∈R,∃M'∈N;M'<k⇒|a_k-a|<ε' 0<ε'∈R,∃M"∈N;M"<h⇒|b_h-b|<ε' ところが |a-b|=|(a-a_k)-(b-b_h)+(a_k-b_h)| ≦|a-a_k|+|b-b_h|+|a_k-b_h|<2ε'+|a_k-b_h| ∴ |a_k-b_h|>|a-b|-2ε' これはmax{M',M"}<∀k,h∈Nに対しても|a_k-b_h|>|a-b|-2ε'となってしまう事を意味しているので ここでε':=|a-b|/4と採ってしまうと, ∃M∈N;M<k,h∈N⇒|a_k-b_h|>|a-b|/2 となり,Cauchy列の定義に反する) よって命題2) そして,{c_n}の収束値をcとするとc∈A (∵c∈A^cだと仮定してみると今,lim[n→∞]c_n=cなので 0<∀ε∈R,∃M∈N;M<m∈N⇒d(c_m,c)<εと書ける筈だが書けない(∵dはAでしか定義されてない)) 、、、と示せると思うのですが2行目「{c_n}が有界」の理由がわかりません。 d(c_m,c_n)<εからどうすれば{c_n}が有界である事が言えますでしょうか?

  • 有界変動についての真偽判定問題で教えて下さい

    下記の問題を解いています。 [問] f:[a,b]→R (a,b∈R,a<b)とする時,次の真偽を判定せよ。 (1) fが増加ならばfは有限変動である。 (2) fが増加ならf(x)=∫[x..a]f'(y)dy. (3) fが有界変動ならばfは2つの増加関数の差として表される。 (4) fが絶対連続ならばf(x)=∫[x..a]f'(y)dy. (5) fが有界変動ならばfはa.e.で微分可能 有界変動の定義は 『f:[a,b]→R (但し,a,b∈R,a<b)とする。 V((s,t],f)は(s,t]⊂[a,b]でのfの変動 ⇔ V((s,t],f)=sup{Σ[1≦k≦n]|f(s_k)-f(s_(k-1))|∈R∪{∞};n∈N} (但し,s_0,s_1,…,s_nはs=s_0<s_1<…<s_n=tなる分割) そして,特にV((s,t],f)<∞の時,fは(s,t]で有界変動という。 V((a,b],f)<∞の時,単にfは有界変動であるという』 絶対連続の定義は 『f:[a,b]→R (但し,a,b∈R,a<b)とする。fが[a,b]で絶対連続 ⇔ 0<∀ε∈R,0<∃δ∈R; i≠jならばInt[a_i,b_i]∩Int[a_j,b_j]=φ(但し,Int[a_i,b_i]は[a_i,b_i]の内核を表す)でΣ(b_i-a_i)<δなる[a,b]の任意の部分区間の列{[a_i,b_i]} に対し Σ(f(b_i)-f(a_i))<ε』 です。 (1)については fが閉区間で単調なのでfは有界。従って,fは有界変動 (2)についてはf(x)=∫[x..a]f'(y)dyとはdf(x)/dx=f'(x)を満たす関数という事なのでそのような関数としてf(x)=∫[x..a]f'(y)dy+1とかも採れる。よってf(x)=∫[x..a]f'(y)dyとは限らないので偽。 (3)についてはJordanの分解定理「f:[a,b]→Rが有界変動. ⇔ ∃f_1とf_2とは増加関数でf=f1-f2」 より真。 (4)についても(2)と同様でf(x)=∫[x..a]f'(y)dy+1とかも採れる(∵f(x)=∫[x..a]f'(y)dy+1はf(x)=∫[x..a]f'(y)dyを平行移動しただけなので絶対連続性は保たれる)。よって偽。 (5)については測度としてルベーグ測度λが仮定してあるんだと思います。 fとしてディレクレ関数 f(x)=1 (xが有理数の時),0 (xが無理数の時) を考えるとλ([a,b]∩Q)=0,λ([a,b]∩(R\Q))≠0ですがfは[a,b]の至る所で不連続なので[a,b]の至る所で微分不可能なので 勿論,a.e.(即ち[a,b]∩(R\Q))ででも微分不可能。 よって偽。 と結論づいたのですが如何でしょうか?

  • 積分は有界?

    f(t)が与えられた時に、fの積分、(例えば、tが0からxまでの積分)が有界であるかを見極めるには、f(t)が0からxまでの間で、有界かどうかを見極めるだけで判断できるのでしょうか?(たとえば、f(t)が0からxで有界なら、その積分も有界であるのように・・)

  • 高校数学言葉の意味(有界)

    wikiで調べたのですが、有界の意味が捉えられません。 次の文脈ではどのような意味でつかわれているのか、教えてください。 今まで積分可能な関数ばかり取り上げてきた。実際受験生が目にする関数は連続であるか、区分的に連続だから、ほとんどすべての関数が積分可能になる。しかし、このままでは、何でも積分出来ると思われては困るので、有界なのに積分不可能な関数をあげておく。(例)0≦x≦1で次のように定義される関数がある f(x)=1(xが有理数);0(xが無理数)

  • 正則だから、有界?

    今日は。複素関数を独学中ですが、次の教科書の記載文中で分からない箇所が有りますので教えて下さい。 いま関数f(z)が開円板|z-α|<ρで正則であるとする。 zをこの開円板の点とし、rを|z-α|<r<ρなる任意の正の数、Cを円周|ζ-α|=rを正の方向に進む道とする。この後の記載は少し省略させて頂きまして、次の f(ζ)はC上で正則だから、有界であって、C上でつねに  |f(ζ)|<M となるような正の数Mが存在し、…とあります。 疑問点は、「f(ζ)はC上で正則だから、有界であって」の箇所です。私としては、 f(ζ)はρ内およびC上で連続でCに沿って一周する積分路をとると∫_cf(ζ)dζ=0であるからf(ζ)は有界である。のかと考えてみたのですがすっきりしません。 なぜ正則だと有界といえるのか分かり易く教えていただけたら幸いです。

  • 上限の定義についてお願いします。

    上限の定義についてお願いします。 集合Aは上に有界で、上限をaとすると、任意の正数εに対して、a-ε<b、b∈Aとなるのはなぜですか? 証明をお願いします。