• 締切済み

有界変動についての真偽判定問題で教えて下さい

下記の問題を解いています。 [問] f:[a,b]→R (a,b∈R,a<b)とする時,次の真偽を判定せよ。 (1) fが増加ならばfは有限変動である。 (2) fが増加ならf(x)=∫[x..a]f'(y)dy. (3) fが有界変動ならばfは2つの増加関数の差として表される。 (4) fが絶対連続ならばf(x)=∫[x..a]f'(y)dy. (5) fが有界変動ならばfはa.e.で微分可能 有界変動の定義は 『f:[a,b]→R (但し,a,b∈R,a<b)とする。 V((s,t],f)は(s,t]⊂[a,b]でのfの変動 ⇔ V((s,t],f)=sup{Σ[1≦k≦n]|f(s_k)-f(s_(k-1))|∈R∪{∞};n∈N} (但し,s_0,s_1,…,s_nはs=s_0<s_1<…<s_n=tなる分割) そして,特にV((s,t],f)<∞の時,fは(s,t]で有界変動という。 V((a,b],f)<∞の時,単にfは有界変動であるという』 絶対連続の定義は 『f:[a,b]→R (但し,a,b∈R,a<b)とする。fが[a,b]で絶対連続 ⇔ 0<∀ε∈R,0<∃δ∈R; i≠jならばInt[a_i,b_i]∩Int[a_j,b_j]=φ(但し,Int[a_i,b_i]は[a_i,b_i]の内核を表す)でΣ(b_i-a_i)<δなる[a,b]の任意の部分区間の列{[a_i,b_i]} に対し Σ(f(b_i)-f(a_i))<ε』 です。 (1)については fが閉区間で単調なのでfは有界。従って,fは有界変動 (2)についてはf(x)=∫[x..a]f'(y)dyとはdf(x)/dx=f'(x)を満たす関数という事なのでそのような関数としてf(x)=∫[x..a]f'(y)dy+1とかも採れる。よってf(x)=∫[x..a]f'(y)dyとは限らないので偽。 (3)についてはJordanの分解定理「f:[a,b]→Rが有界変動. ⇔ ∃f_1とf_2とは増加関数でf=f1-f2」 より真。 (4)についても(2)と同様でf(x)=∫[x..a]f'(y)dy+1とかも採れる(∵f(x)=∫[x..a]f'(y)dy+1はf(x)=∫[x..a]f'(y)dyを平行移動しただけなので絶対連続性は保たれる)。よって偽。 (5)については測度としてルベーグ測度λが仮定してあるんだと思います。 fとしてディレクレ関数 f(x)=1 (xが有理数の時),0 (xが無理数の時) を考えるとλ([a,b]∩Q)=0,λ([a,b]∩(R\Q))≠0ですがfは[a,b]の至る所で不連続なので[a,b]の至る所で微分不可能なので 勿論,a.e.(即ち[a,b]∩(R\Q))ででも微分不可能。 よって偽。 と結論づいたのですが如何でしょうか?

みんなの回答

  • nakaizu
  • ベストアンサー率48% (203/415)
回答No.1

(2)(4)の説明は意味不明。おそらくは見当外れの考え方をしている。 f(a)=0とかの条件がついていませんでしたか? 不定積分の積分定数が決定できないという趣旨の問題ではないと思います。 (5)あなたのディレクレ関数は有界変動ではありません。

関連するQ&A

  • f:[a,b]→Rに於いて,fが有界変動で連続の時,f=f_1-f_2 (但し,f_1,f_2は連続な増加関数)

    こんにちは。 f:[a,b]→R (但し,a,b∈R,a<b)とする。 V((s,t],f)は(s,t]⊂[a,b]でのfの変動 ⇔ V((s,t],f)=sup{Σ[1≦k≦n]|f(s_k)-f(s_(k-1))|∈R∪{∞};n∈N} (但し,s_0,s_1,…,s_nはs=s_0<s_1<…<s_n=tなる分割) そして,特にV((s,t],f)<∞の時,fは(s,t]で有界変動という。 V((a,b],f)<∞の時,単にfは有界変動であるという。 が変動の定義だと思います。 f:[a,b]→Rに於いて,fが有界変動で連続の時,f=f_1-f_2 (但し,f_1,f_2は連続な増加関数)となる事を示せ。 という問題です。 f_1,f_2とも増加関数とし,f(x) (但し,x∈(a,b])の値が正の時はf_1>f_2で 負の時にはf_2がf_1を追い抜き,f_1<f_2の関係にすれば, 常にf_1,f_2とも増加関数でfの値をf_1とf_2との差で表す事ができることは頭の中では分かるのですが 実際には式でどうやって示せばよいのでしょうか?

  • 有界閉集合の重心

    R^nの有界(閉)集合Bの重心は次の式を満たすgということでいいでしょうか?  ∫(x∈B)(x-g)dμ(R^n) このとき、Bが有界と言う条件からgの一意性が成り立つのでしょうか? また、f:B→Rの可測関数とするとfの重心を {(x,y)|x∈B,y∈f(B)}⊆R^(n+1)の重心として定義されるでしょうか?

  • 微分と積分の順序交換

    熱方程式 Ut-Uxx=0 (t>0,x∈R) の基本解を (4πt)^(-1/2)・exp(-x^2/4t)=K(t,x)とおきます。 φ(x)をR上有界な一様連続な関数と仮定し、 U(t,x)=∫(R~R)K(t,x-y)φ(y)dy (y∈R)とおきます。 このとき (∂/∂x)U(t,x)=∫(R~R)(∂/∂x)K(t,x-y)φ(y)dy を満たすことを示し、U(t,x)が熱方程式を満たすことを示そうとしています。 そこで、 以下の微分と積分を入れ替える定理を使って証明しようとしています。 定理1 h=h(x,y)は(a,b)×Rで定義された関数で、次の性質を持つ (1)ほとんどすべてのyについてhはxの関数とみて(a,b)でC1級である (2)∂h/∂xは(a,b)×Rで可積分とする (3)少なくとも1点c∈(a,b)でh(c,y)はR上可積分とする (4)∫(R~R)(∂h/∂x)dyは区間(a,b)の各点xで連続とする このとき∫(R~R)(∂h/∂x)dy=∂/∂x∫(R~R)h(x,y)dyとなる。 この定理を使って、Uが熱方程式を満たすことに苦戦しています。 どなたか行間の空かない詳しい証明をよろしくお願いします。

  • 位相数学の証明問題です。

    (1)R空間の部分集合で連結かつコンパクトなものは有界な閉区間に限ることを示してください。 (3)[a,b]上で定義された実数値連続関数f(x)に対して、正の実数δで次の※性質をもつものが存在することを示してください。 ※|x-y|<δを満たすすべてのx,y∈[a,b]に対して、|f(x)-f(y)|<0.1 の証明を、どなたか分かる方、よろしくお願いします

  • 大至急お願いします!解析の問題です!!!!

    大至急御願いします!解析の問題です!!!! 分かる範囲でいいので、なるべく詳しくお願いします! 1問でもかまいません!よろしくお願いします! 1. (1)R^2のノルム||・||を一つ選んで、その選んだノルムの定義を記せ。 (2)pを正の定数とし、B={y^→(yベクトル)∈R^2;||y^→||≦p}とおく。 ある定数M>0が存在し、任意のy^→=(y1),z^→=(z1)∈Bに対して (y2) (z2) |y1^2-z1^2|≦M||y^→-z^→||,|y2^2-z2^2|≦M||y^→-z^→||,|y1y2-z1z2|≦M||y^→-z^→|| が成り立つことを示せ。 (3)Iを有界閉区間とし、a(x),b(x),c(x),d(x)はI上の連続関数とする。R^3の領域 E=I×B={(x,y^→);x∈I,y^→∈B} において、微分方程式 (y1)´=(a(x)y1^2+b(x)y2^2) (y2) (c(x)y1y2+d(x) ) の解は、I×B内に任意に与えられた初期条件に対して一意的に存在することを示せ。 (4)前問の微分方程式について、 I×R^2={(x,y^→);x∈I,y^→∈R^2} においても初期条件に対する解の一意性が成り立つことを示せ。 2. IをRの区間とする。f^→(x,y^→)はI×R^nの連続関数とする。 微分方程式y^→=f^→(x,y^→)については、初期条件に対する解の一意性が成り立つと仮定する。 (1)I×R^n上で||f^→(x,y^→)||が有界であるとき、この微分方程式の任意の解はI全体に延長可能であることを示せ。 (2)ある定数M>0が存在して、I×R^n上で ||f^→(x,y^→)||≦M√||y^→|| が成り立つとき、やはりこの微分方程式の任意の解はI全体に延長可能であることを示せ。 3. 微分方程式(y^→)´=f^→(x,y^→)について、初期条件に対する解の一意性が成り立っているとする。 この微分方程式の、初期条件y^→(a)=b^→をみたす極大延長解を p^→(x,a,b^→)で表し、その定義される区間をIとする。このとき、任意のa1∈Iに対して、 p^→(x,a1,p^→(a1,a,b^→)=p^→(x,a,b^→) (任意のx∈I) が成り立つことを示せ。 よろしくお願いします!!!!!

  • 微積分の問題です。

    微積分の問題です。 f(x,y):R^2上の実数値C^1級関数 g(x):R上の実数値C^1級関数 F(x)=int{_0^g(x)}f(x,y)dy x∈R これがC^1級であることを示し、その導関数F'(x)を求めよ。 これはF(x)が連続であることを示して、F(x)の一回微分が一様連続であることを示すんですよね? この問題でR上連続はどのようにしたら示せますか? よろしくお願いします。

  • R⊃E:有界、そして関数f:E→RがEで一様連続⇒fはEで有界

    宜しくお願い致します。 [問]実数体R⊃E:有界、そして関数f:E→RがEで一様連続とする時、 fはEで有界となる事を示せ。 という問題を解いています。 これは仮定"fはEで一様連続"なので 0<∀ε∈R,∃δ>0; (∀x,y∈E such that |x-y|<δ) ⇒ |f(x)-f(y)|<ε と言 え、 このεとして2Mを採れば 2M>0,∃δ>0; (∀x,y∈E such that |x-y|<δ) ⇒ |f(x)-f(y)|<2M と書けますね。 そして、∀x∈E; |f(x)|<2M+|f(y)|と書けますが ここでの∀x∈Eは|x-y|<δという制限付きでの∀x∈E、 つまり、∀x∈E such that |x-y|<δですから全てのEの元を網羅してる訳では有りませんよね? 従って、∀x∈E; |f(x)|<2M+|f(y)|で全てのx∈Eで抑えれると都合よくは書けないと思うのですが。。。 如何でしょうか?

  • 解析の問題です。早めの回答希望です。

    解析の問題です。 f(x)は[0,∞)上の有界なルベーグ可測関数とする。(0,∞)の関数を F(t)=∫exp(-xt)・f(x)dx (積分範囲は太字のRとする) と定義するとき次を示せ。 (1)勝手なr>0をとるとs∈[r,0)でF(t)は連続であることを示せ。従って、F(t)は(0,∞)において連続であることを示せ。 (2)勝手なr>0をとるとF(t)は[r,∞)において無限回微分可能であり {F(t)をtでm回微分したもの}=∫{(-x)^m}{exp(-xt)}f(x)dx (積分範囲は0から∞) が成り立つことを示せ。

  • 積分は有界?

    f(t)が与えられた時に、fの積分、(例えば、tが0からxまでの積分)が有界であるかを見極めるには、f(t)が0からxまでの間で、有界かどうかを見極めるだけで判断できるのでしょうか?(たとえば、f(t)が0からxで有界なら、その積分も有界であるのように・・)

  • フーリエ級数の不連続点における収束について

     こんにちわ。自分あ物理系のB2の学生です。  不連続関数をフーリエ級数展開した場合、フーリエ級数ては不連続点に対して,不連続点の右極限と左極限の相加平均に収束するのでしょうか。ギブス現象は聞いたことがあるのですが、収束性は保障されるのですか。  このような質問をいたしましたのはジョルダン・ルベーグの定理で、フーリエ級数の各点収束を示そうとしたのですが、不連続点での扱いが自分は説明できなかったからです。講義で扱ったジョルダン・ルベーグの定理は  fが有界変動であり,|f|が1周期上積分可能で積分値が有限であるとする。このときfのxにおけるフーリエ級数Snが   Sn→1/2 {f(x+0) + f(x-0)} as n→∞  というもので、連続性の条件はありません。証明上の問題点は、fが有界変動であるので  φ(t) = f(x+t)+f(x-t)-f(x+0)-f(x-0) → 0 as t→0  なるφは有界変動であるから、単調増加する正値関数P,Nをもちいて  φ(t) = P(t) - N(t) + φ(0)  で表現される。このとき  P(t) + N(t)→0 as t →0 (1)  とあるのですが、xにおいてfが不連続の場合,(1)は成立しないと思う点です。