• 締切済み

フーリエ級数の不連続点における収束について

 こんにちわ。自分あ物理系のB2の学生です。  不連続関数をフーリエ級数展開した場合、フーリエ級数ては不連続点に対して,不連続点の右極限と左極限の相加平均に収束するのでしょうか。ギブス現象は聞いたことがあるのですが、収束性は保障されるのですか。  このような質問をいたしましたのはジョルダン・ルベーグの定理で、フーリエ級数の各点収束を示そうとしたのですが、不連続点での扱いが自分は説明できなかったからです。講義で扱ったジョルダン・ルベーグの定理は  fが有界変動であり,|f|が1周期上積分可能で積分値が有限であるとする。このときfのxにおけるフーリエ級数Snが   Sn→1/2 {f(x+0) + f(x-0)} as n→∞  というもので、連続性の条件はありません。証明上の問題点は、fが有界変動であるので  φ(t) = f(x+t)+f(x-t)-f(x+0)-f(x-0) → 0 as t→0  なるφは有界変動であるから、単調増加する正値関数P,Nをもちいて  φ(t) = P(t) - N(t) + φ(0)  で表現される。このとき  P(t) + N(t)→0 as t →0 (1)  とあるのですが、xにおいてfが不連続の場合,(1)は成立しないと思う点です。

みんなの回答

  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.1

正値関数P(t),N(t)の取り方によって、P(t)+N(t)→0 (t→0) は可能と思う。 P(t)=1/2・{φ(t)+Vt-V0} N(t)=1/2・{φ(t)-Vt+V0} (ここで Vt=f(x+t)+f(x-t)、V0=f(x+0)+f(x-0)と置いた) とすれば、 P(t)+N(t)=φ(t)→0 (t→0)

kfnorisu
質問者

お礼

返答が遅れて申し訳ございません。納得できました。どうもありがとうございます。

関連するQ&A

  • 級数の収束について

    級数の収束について、 全てのnに対してan≧0であり、部分和Sn=Σ[k=1, n]ak が上に有界ならば級数Σ[n=1, ∞]an は収束する。 という定理がありますが、上に有界とはどういうことですか?

  • フーリエ級数収束定理とリーマン・ルベーグの定理

    フーリエ級数収束定理の証明を考えているのですが、ある疑問が出て、証明にたどり着けません。 問題の根本はリーマンルベーグの定理から来るものです。 フーリエ級数収束定理の証明を考えると、、最終的に、以下の式の証明を考えなければならないと分かりました。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 (ω=2π/T) …(1) この証明にリーマンルベーグの定理を用いるのですが、困った事がおきました。 フーリエ級数収束定理とは次のような定理です。 周期Tの周期関数f(t)が「区分的に滑らか」であるとき、f(t)のフーリエ級数代n部分和S[n](t)に関して、次の極限式が成り立つ。 lim[n→∞]{S[n](t)}=f(t) …(2) (ただし、不連続点では、[右辺]={f(t-0)+f(t+0)}/2) 「区分的に滑らか」と「区分的に連続」の定義は次のようになります。 (※)「区分的に滑らか」…有限個の微分不可点(傾きが急変する点や不連続点)t[k](k=1,2,3,…,n)が存在するもののそれ以外の点では連続かつ有界。また、 tkの近傍(t[k]±0)において、t[k]-0 における左側微分係数(f'-(t[k]-0))及び、t[k]+0 における右側微分係数(f'+(t[k]+0))が存在する。 (微分不可点を除いて、関数とその導関数が有界であれば区分的に滑らかであるといえる。) (※)「区分的に連続」…有限個の不連続点tkを除いて連続かつ有界。また、tkにおける左側極限値 f(t[k]-0) 及び、右側極限値 f(t[k]+0) が存在する。 lim[n→∞]{∫[-T/2→T/2]{(f(u+t)-f(t))/sin(ωu/2)*sin((n+1/2)ωu}du}=0 ((1)式) が成り立つことを示すには、リーマン・ルベーグの定理(補題)を使うと思います。このリーマン・ルベーグの定理とは、 関数f(x)が区間[a,b]で、「ある性質」を持つとき、次の極限式が成立する。 ・lim[n→∞]{∫[a→b]{f(x)sin(nx)}=0 …(3) ・lim[n→∞]{∫[a→b]{f(x)cos(nx)}=0 という定理です。最終的には、このリーマン・ルベーグの定理(補題)が証明でき、(1)式に応用することができれば良いのではないかという結論に至りました。 リーマン・ルベーグの定理の証明について、いくつかのサイトを参考にしたのですが、f(x)が持つ「ある性質」の部分が統一されておらず、 ・区分的に滑らか ・区分的に連続 の2通りの流儀があるようでした。 リーマン・ルベーグの定理の成立条件として「f(x)が区分的に滑らか」を採用した場合、 ∫[a→b]{f(x)sin(nx)}=[a→b](1/n)[-f(x)cos(nx)]+∫[a→b](1/n){f'(x)cos(nx)} から、f(x)及びf'(x)が[a,b]で有界ならば、n→∞としたとき零になり、リーマン・ルベーグの定理が成立することが分かります。 これを(1)式に対して適用します。(3)式のf(x)は、(1)式では、(f(u+t)-f(t))/sin(ωu/2)です。 (f(u+t)-f(t))/sin(ωu/2)=g(u) とおくと、g(u)およびg'(u)が有界であることを言うことが必要になります。 g(u)=(f(u+t)-f(t))/u*u/sin(ωu/2) , lim[u→0]g(u)=2/ω*f'(t) より、 [-T/2≦u≦T/2]において、f(t)及びf'(t)が発散しなければ、つまりf(t)が周期T内で「区分的に滑らか」ならば、g(u)は有界であることが言えそうなのです が、g'(u)が[-T/2≦u≦T/2]で有界になることが自分には証明できませんでした。もし証明できるならば教えてください。 一方で、リーマン・ルベーグの定理の成立条件として「f(x)が区分的に連続」を採用した場合ですが、この定理の証明に http://tmlaboratory.at-ninja.jp/doc/Riemann-Lebesgue_lemma/node3.html http://homepage3.nifty.com/rikei-index01/ouyoukaiseki/riemanrubeg.html を参考にしながら次のように検討しました。 区分的に連続の関数f(x)が閉区間[a,b]で有限個(M個)の不連続点(x=t[k](k=1,2,…,M))を持つとする。 [a,b]内で連続となる区間はM+1個できる。この連続区間を、取りうるxの小さいほうから順にT[k](k=1,2,…,M,M+1)と書く。 各区間T[k]の範囲は、 T[k]:[t[k-1]≦x≦t[k]] (k=1,2,…,M+1) (ただし、t[0]=a,t[M+1]=b) 各連続区間T[k]上の連続関数をf[k](x)(k=1,2,…,M+1)とする。 f(x)は[a,b]で有界だから |f(x)|≦F , |f[k](x)|≦F …(4) を満たす実数Fが存在する。 区間T[k]上でf[k](x)に対するリーマン・ルベーグの定理が成り立つことが言えれば、 [a,b]上のf(x)に対するリーマン・ルベーグの定理が成り立つことが言える。 f(x)の任意の連続区間T[k]=[t[k-1],t[k]]をN等分し、T[k]上の分割点を小さい方より、 t[k-1]=x[0]<x[1]<x[2]<…<x[l-1]<x[l]<…<x[N-1]<x[N]=t[k] とおく。 分割した小区間の長さを⊿xすると ⊿x=x[l]-x[l-1] (l=1,2,…,N) =(t[k]-t[k-1])/N すると求める積分は、 ∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx=Σ[l=1,N]{∫[x[l-1]→x[l]]{f[k](x)sin(nx)}dx} …(5) となる。このときxの範囲は、(x[l-1]≦x≦x[l])である。 (5)式に対し、その大小関係を考えていく。 |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx| ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・|sin(nx)|dx+|f[k](x[l])|・|∫[x[l-1]→x[l]]{sin(nx)}dx|} …(6) |sin(nx)|≦1 |f[k](x)|≦F より (6式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|・1・dx+F|∫[x[l-1]→x[l]]{sin(nx)}dx|} ≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+F/n*(|cos(nx[l-1])|+|cos(nx[l])|)} …(7) |cos(nx[l-1])|≦1 |cos(nx[l])|≦1 より (7式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx+2F/n} =Σ[l=1,N]{∫[x[l-1]→x[l]]|f[k](x)-f[k](x[l])|dx}+Σ[l=1,N]{2F/n} …(8) f[k](x)の連続性から (x[l-1]≦x≦x[l])の範囲のx、及び任意の正の実数εに対して、 |x-x[l]|≦⊿x=x[l]-x[l-1]=(t[k]-t[k-1])/N ならば |f[k](x)-f[k](x[l])|≦ε を満たす⊿xがただ一つ定まる。このとき分割数Nも適切に取る。 (8)式に対し (8式)≦Σ[l=1,N]{∫[x[l-1]→x[l]]{ε}dx}+2NF/n =Σ[l=1,N]{ε(x[l]-x[l-1])}+2NF/n =Nε(x[l]-x[l-1])+2NF/n =ε(t[k]-t[k-1])+2NF/n よって |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n …(9) (9)式について 2NF/n≦ε となるようにnを大きく取れば |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1])+2NF/n ≦ε(t[k]-t[k-1])+ε =ε(t[k]-t[k-1]+1) 最終的に |∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|≦ε(t[k]-t[k-1]+1) …(10) の関係が言える。 参照したサイトでは、εは任意に取ることができるから、n→∞とすればε→0より lim[n→∞]|∫[t[k-1]→t[k]]{f[k](x)sin(nx)}dx|=0 となり、リーマン・ルベーグの定理が成り立つと結論付けていますがε→0とするとき、 ∀ε>0,∀x[l]>0∈T[k],∃⊿x>0 s.t.∀x∈⊿x=x[l]-x[l-1], |x-x[l]|≦⊿x⇒|f[k](x)-f[k](x[l])|≦ε となるように⊿xを決めているから、ε→0 とするとき同時に ⊿x→0 になり、分割数Nを∞にする必要がでてきます。 結局はn→∞,ε→0としても、⊿x→0,N→∞としなければならず、 2NF/n≦εの関係からlim[n→∞]{2NF/n} (≦ε) は零に収束しないような気がします。 どうすれば答えが導けるでしょうか。

  • 質問:フーリエ級数はどんなとき元の関数に収束するの?

    私の本(岩波)によると e[n](t)≡exp(i・2・π・n・t)とし f(t)=f(t+1)(∀t∈R)とし F[n]≡∫(t∈[0,1])dt・f(t)・e[-n](t)としたとき 「f(t)がC^1級であれば Σ(n∈Z)・F[n]・e[n](t)がf(t)に一様収束する」 とあり 「f(t)が区分的にC^1級であれば Σ(n∈Z)・F[n]・e[n](t)が(f(t-0)+f(t+0))/2に各点収束する」 とありますが (1)「フーリエ級数の一様収束」のもっと緩い条件を教えてください (2)「フーリエ級数の各点収束」のもっと緩い条件を教えてください (1)と(2)のどちらでもいいです

  • フーリエ級数について

    次の問題を解いてください。 f(x)を区間-π≦x≦πで連続かつf(-π)=f(π)をみたし、その導関数f'(x)が区分的に連続な関数とする。f(x)が、 F(x)=a_0/2+Σ[n=1,∞](a_n cos(nx)+b_n sin(nx)) とフーリエ級数に展開されるとき、以下の問いに答えよ。 (1)f'(x)をフーリエ級数に展開したときの展開係数をa_n,b_nを用いて表せ。 (2)(1)式の右辺をxで微分し(フーリエ級数の項別微分)、これを(1)と比較せよ。 くわしくお願いします。

  • フーリエ級数の問題です。

    フーリエ級数の問題です。 1.fは周期2πの関数で次を満たす。f(x)=0(-π<x≦0)or f(x)=x(0<x≦π) (1)fをフーリエ級数展開し、各点収束定理を用いて収束を調べよ。 (2)x=π/2を代入してπの値を求める級数を作れ。 よろしくお願いします。

  • フーリエ級数教えて下さい

    f(t)=(1/T)*tを[-T/2,T/2]でのフーリエ級数の式を解いていたら、 答えが(-2/π)Σ_[n=1,∞](1/n)になったんですがあってますか? フーリエ級数がマイナスになるのかどうかよくわからないです。

  • フーリエ級数について

    現在フーリエ級数の問題を解いているんですが、解答がないので答えが合っているか教えて下さい。また間違えていたら解答と解き方を教えてください。 f(t)のフーリエ級数を求めよ。 f(t)=0 (-π<t<0)    t (0<t<π) 自分の解答 a0=π/4 , an=(1/2)*cos nπ , bn=(π/2)*sin nπ よろしくお願いします。

  • フーリエ級数について

    次の問題を解いてください。 周期2πの関数f(x)が区間-π<x≦πにおいて次のようにフーリエ級数に展開されている。 f(x)=Σ[n=1,∞]2sin(nx)/n ここで、関数g(x)が区間-π<x≦πにおいて区分的に連続で、そのフーリエ級数は g(x)=c_0/2 + Σ[n=1,∞](c_n cos(nx)+d_n sin(nx)) で表されるとき、次の二つの関係式を三角関数の直交性を用いて説明せよ。 I_1=(1/2π)∫[-π,π]f(x)g(x)dx=Σ[n=1,∞]d_n/n I_2=(1/2π)∫[-π,π]f(x)g(x+t)dx=Σ[n=1,∞](d_n cos(nt)-c_n sin(nt))/n くわしくお願いします。

  • フーリエ級数とは?

    馬鹿っぽい質問ですみません。 フーリエ級数についてなのですが、級数を求める式はわかるのですが、実際に周期関数から当てはめて考えるときに頭が混乱してしまいます。 例えば、f(x)=x [-π < x < π]があるとき、奇関数なので 2/T(∫f(x)sin(nωt)dt に当てはめればいいと思うのですが・・・f(x)が連続してないと途端に混乱します。 初歩的で申し訳ないのですが、方法を教えていただけませんか? また、初心者向けの解説サイトがあれば教えていただけたらと思います。

  • フーリエ級数

    フーリエ級数の問題について教えてください! f(x)=x(o≦x<π),0(-π≦x<o) この時f(x)のフーリエ級数展開は、 π/4+1/πΣ[∞,n=1]{(-1)^n-1}cos(nx)/n^2-Σ[∞,n=1]{(-1)^n}sin(nx)/n となる。 この式をF(x)としたとき、 (1) F(π)とF(0)とF(-π)を求めよ。 また、X=Σ[∞,x=0]1/(2n+1)^4、Y=Σ[∞,x=1]1/n^2としたとき (2) 1/π∫[-π→π]|f(x)|^2を求め、さらにこれをXとYを使って表せ。 上の2題、よろしくお願いします><