• ベストアンサー

有界閉集合の重心

R^nの有界(閉)集合Bの重心は次の式を満たすgということでいいでしょうか?  ∫(x∈B)(x-g)dμ(R^n) このとき、Bが有界と言う条件からgの一意性が成り立つのでしょうか? また、f:B→Rの可測関数とするとfの重心を {(x,y)|x∈B,y∈f(B)}⊆R^(n+1)の重心として定義されるでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • jmh
  • ベストアンサー率23% (71/304)
回答No.2

「よい定義」じゃなくて「普通の定義」のようですよ。

参考URL:
http://ja.wikipedia.org/wiki/%E9%87%8D%E5%BF%83
yumisamisiidesu
質問者

お礼

ありがとうございます. お礼の返事が遅れてすみませんです. とくに多角形の重心の場合、境界どころか 頂点によって決まってしまうので (もっとも頂点が決まれば境界も決まりますが) 簡単にできることにも注目しました

その他の回答 (1)

  • jmh
  • ベストアンサー率23% (71/304)
回答No.1

「重心gは∫(x-g)=0」、「fの重心はfのグラフの重心」…良い定義だと思います。

yumisamisiidesu
質問者

お礼

ありがうございます 「fの重心はfのグラフの重心」は、 {(x,y)|x∈B,y∈[min({0,f(x)}),max({0,f(x)})]に訂正したいと思います

関連するQ&A

  • 有界変動についての真偽判定問題で教えて下さい

    下記の問題を解いています。 [問] f:[a,b]→R (a,b∈R,a<b)とする時,次の真偽を判定せよ。 (1) fが増加ならばfは有限変動である。 (2) fが増加ならf(x)=∫[x..a]f'(y)dy. (3) fが有界変動ならばfは2つの増加関数の差として表される。 (4) fが絶対連続ならばf(x)=∫[x..a]f'(y)dy. (5) fが有界変動ならばfはa.e.で微分可能 有界変動の定義は 『f:[a,b]→R (但し,a,b∈R,a<b)とする。 V((s,t],f)は(s,t]⊂[a,b]でのfの変動 ⇔ V((s,t],f)=sup{Σ[1≦k≦n]|f(s_k)-f(s_(k-1))|∈R∪{∞};n∈N} (但し,s_0,s_1,…,s_nはs=s_0<s_1<…<s_n=tなる分割) そして,特にV((s,t],f)<∞の時,fは(s,t]で有界変動という。 V((a,b],f)<∞の時,単にfは有界変動であるという』 絶対連続の定義は 『f:[a,b]→R (但し,a,b∈R,a<b)とする。fが[a,b]で絶対連続 ⇔ 0<∀ε∈R,0<∃δ∈R; i≠jならばInt[a_i,b_i]∩Int[a_j,b_j]=φ(但し,Int[a_i,b_i]は[a_i,b_i]の内核を表す)でΣ(b_i-a_i)<δなる[a,b]の任意の部分区間の列{[a_i,b_i]} に対し Σ(f(b_i)-f(a_i))<ε』 です。 (1)については fが閉区間で単調なのでfは有界。従って,fは有界変動 (2)についてはf(x)=∫[x..a]f'(y)dyとはdf(x)/dx=f'(x)を満たす関数という事なのでそのような関数としてf(x)=∫[x..a]f'(y)dy+1とかも採れる。よってf(x)=∫[x..a]f'(y)dyとは限らないので偽。 (3)についてはJordanの分解定理「f:[a,b]→Rが有界変動. ⇔ ∃f_1とf_2とは増加関数でf=f1-f2」 より真。 (4)についても(2)と同様でf(x)=∫[x..a]f'(y)dy+1とかも採れる(∵f(x)=∫[x..a]f'(y)dy+1はf(x)=∫[x..a]f'(y)dyを平行移動しただけなので絶対連続性は保たれる)。よって偽。 (5)については測度としてルベーグ測度λが仮定してあるんだと思います。 fとしてディレクレ関数 f(x)=1 (xが有理数の時),0 (xが無理数の時) を考えるとλ([a,b]∩Q)=0,λ([a,b]∩(R\Q))≠0ですがfは[a,b]の至る所で不連続なので[a,b]の至る所で微分不可能なので 勿論,a.e.(即ち[a,b]∩(R\Q))ででも微分不可能。 よって偽。 と結論づいたのですが如何でしょうか?

  • n単体が閉集合であることの証明

    一般的な位置にある ( n+1 ) 個の点、a_0 , a_1 , … , a_n ∈ R^m をとります。 このとき、n単体 |a_0a_1…a_n| を |a_0a_1…a_n| = {(λ_0)(a_0) + (λ_1)(a_1) + … + (λ_n)(a_n) | λ_0 + λ_1 + … + λ_n = 1 , λ_i ≧0 } で定義します。 さらに |a_0a_1…a_n| の元 x = (λ_0)(a_0) + (λ_1)(a_1) + … + (λ_n)(a_n) に対して、(n+1)個の実数の列 (λ_0 ,λ_1 , … ,λ_n) をxの重心座標と呼びます。 このとき、重心座標を考える事によってn単体が R^mの閉集合となる事がすぐ分かる…らしいのですが、私にはどうしてそうなるのかがよく分かりません。 補集合が開集合となるのが閉集合の定義ですが、定義からどうしめしてよいのかが分かりません。 重心座標を使う、という事なので、次のような関数  f:|a_0a_1…a_n| → R^(n+1) 、    (λ_0)(a_0) + (λ_1)(a_1) + … + (λ_n)(a_n) |→  (λ_0 ,λ_1 , … ,λ_n) を考えて、この連続性を示すのかと思いましたが、この連続性もどう示したらよいのか分かりません。 2単体や3単体、4単体まではイメージも出来るのでそれが閉集合となっていることは直感的には分かるのですが、それ以上となるとイメージが出来ずに困っています。 分かる方がいましたら回答よろしくお願いします。

  • この場合,Cauchy列が有界となる理由は?

    宜しくお願い致します。 最下の命題の証明でCauchy列が有界となる理由がわかりません。 [定義-3]順序集合(A,≦')の部分集合Bに於いて、{b∈B ;∀x∈B,b≦'x}≠φの時、 {b∈B;∀x∈B,b≦'x}:単集合となる{b∈B ;∀x∈B,b≦'x}のただ一つの元bをminBと表記し、(A,≦')に於けるBの最小元と言う。 [定義-2]順序集合(A,≦')の部分集合Bに於いて、{a∈A ;∀x∈B,x≦'a}≠φの時、 {a∈A ;x∈B⇒x≦'a}の元を(A,≦')に於けるBの上界と言う。 [定義-1] 順序集合(A,≦')に於いて、Aの部分集合Bに於ける上界が存在する時、Bは(A,≦')の中で上に有界であると言う。 [定義0] 順序集合(A,≦')に於いて、Aの部分集合Bに於ける上界が存在する時、その上界の集合の最小限をBの上限といい,supBと書く。 [定義1] 数列{a_n}のある部分列がaに収束する時,このaを数列{a_n}の集積値という。 [定義2] 順序集合(A,≦')が完備 ⇔ (i) (A⊃)Bが上に有界ならば∃supB∈A (ii) (A⊃)Bが下に有界ならば∃infB∈A [命題1](Weierstrassの定理) 有界な数列には少なくとも1つの集積値が存在する。 [命題2] 数列{a_n}が収束する ⇔ (i) {a_n}が有界 (ii) {a_n}の集積値は唯一つ [命題3] 順序集合(A,≦')を距離空間(その距離をdとする)とする。Aが完備ならばAの任意のCauchy列{c_n}はlim[n→∞]c_n∈A. を示しています。 [証] Cauchy列の定義から0<∀ε∈R,∃M∈N;M<m,n∈N⇒d(c_m,c_n)<ε {c_n}は有界(∵?)。 従って,sup{c_n}∈A,inf{c_n}∈A(∵定義2) これから{c_n}は有界と言えるから,{c_n}は収束する (∵唯1つの集積値が存在する (∵{c_n}には少なくとも1つの集積値が存在するから(命題1), {c_n}の集積値が2つあったと仮定し,その集積値をa,bとする。 {c_n}の部分列{a_n}がaに収束,部分列{b_n}がbに収束。 収束の定義から夫々 0<ε'∈R,∃M'∈N;M'<k⇒|a_k-a|<ε' 0<ε'∈R,∃M"∈N;M"<h⇒|b_h-b|<ε' ところが |a-b|=|(a-a_k)-(b-b_h)+(a_k-b_h)| ≦|a-a_k|+|b-b_h|+|a_k-b_h|<2ε'+|a_k-b_h| ∴ |a_k-b_h|>|a-b|-2ε' これはmax{M',M"}<∀k,h∈Nに対しても|a_k-b_h|>|a-b|-2ε'となってしまう事を意味しているので ここでε':=|a-b|/4と採ってしまうと, ∃M∈N;M<k,h∈N⇒|a_k-b_h|>|a-b|/2 となり,Cauchy列の定義に反する) よって命題2) そして,{c_n}の収束値をcとするとc∈A (∵c∈A^cだと仮定してみると今,lim[n→∞]c_n=cなので 0<∀ε∈R,∃M∈N;M<m∈N⇒d(c_m,c)<εと書ける筈だが書けない(∵dはAでしか定義されてない)) 、、、と示せると思うのですが2行目「{c_n}が有界」の理由がわかりません。 d(c_m,c_n)<εからどうすれば{c_n}が有界である事が言えますでしょうか?

  • 測度・ルベーグ測度について

    以下の問題がよくわからないので質問します。 (1) f:R→Rを単調増加な右連続関数とする。 (⇔f(x+0)=f(x),x∈Rかつ、x<yならば、f(x)<=f(y)が成立) f(∞)=lim(R→∞)f(R) f(-∞)=lim(R→-∞)f(-R)で定義する。 -∞<=a<b<=∞に対して、ρ((a,b])=f(b)-f(a)でρを定義すると、ρはA_R上の測度である。 カラテオドリ・ハーンの理論により作られる可測集合の族M_fとこの上の測度μ_fを考える。 このとき一点から成る集合{a}は可測集合(M_fの元)であり、μ_f({a})=f(a)-f(a-0)であることを示せ。 (2) R^n上のルベーグ可測集合の族M_(R^n)とその上で定義されたルベーグ測度μ_(R^n)を考える。 a>0とR^nの部分集合Eに対して、M_aE={ax=(ax_1,ax_2,...,ax_n|x=(x_1,x_2,...,x_n)∈E}で定義する。 このときE∈M_(R^n)ならばM_aE∈M_(R^n)かつμ_(R^n)(M_aE)=a^nμ_(R^n)(E)であることを示せ。

  • このような関数が可測関数である事の証明がわかりませ

    宜しくお願いいたします。 B(C)を複素数体C上のボレルσ集合体を表すものとします。 更にE,F∈B(C),p∈F,f:E×F→Cは(E\N)×Fで連続とし(Nは零集合),fはpで偏微分可能とします。 g:E→[0,+∞)をE∋∀x→g(x):=sup{|(f(x,y)-f(x,y_0))/(y-y_0)|∈R;y∈F}と定義します。 この時,gは可測関数である事を証明するにはどうすればいいでしょうか?

  • 凸関数の問題

    凸集合と凸関数に関する問題です。 問題 x,y∈R^nの内積を<x,y>=x´yで定義する。R^n上の凸集合Cに関して 関数fを                 (ただし、x´はxの転置行列)       f(x)=sup{<x,y>|y∈C} とおく。 (1)fが凸関数であることを示せ  fのエピグラフepi fがR^(n+1)上の凸集合であるとき、fが凸関数  であることから考えようとしたのですが解けません。  ちなみに、fのエピグラフepi fの定義は    epi f={(x,μ)|x∈S,μ∈R,μ≧f(x)} fは、その領域がS∈R^nであり、値は実数か±∞をとるような関数 (2)n=1としたとき、C=[0,1]の場合fはどうなるか?  (1)をどう生かしていけばいいのかわからない。 (3)n=2として、C={(y[1],y[2]|y[1]+y[2]≦1、y[1],y[2]≧0}    のとき、fの等高線をR^2上ではどうなるか?  Cの領域の図示はしましたが、これをどうするのか扱いが理解できない。 以上なのですが、何とか理解したいのでよろしくお願いします。  

  • f_n=g_n a.e on R^nとする。g_n→g(測度収束)ならばf_n→g(測度収束)を

    次の問題で質問です。 [問]f_n=g_n a.e on R^nとする。g_n→g(測度収束)ならばf_n→g(測度収束)を示せ(f_n,g_n,gはルベーグ可測な関数)。 [証明] R^nでの殆どいたるところでf_n=g_nだというのだから零集合Zを除いたx∈Eではf_n(x)=g_n(x)という意味だと思います。 f_n,g_n,gをE⊂R^n上のルベーグ可測関数とする。 仮定より,0<∀ε∈R,0=lim[n→∞]μ({x∈E;|g_n(x)-g(x)|≧ε}) =lim[n→∞]μ({x∈E\Z;|g_n(x)-g(x)|≧ε}∪{x∈Z;|g_n(x)-g(x)|≧ε})(但しZは零集合) =lim[n→∞](μ({x∈E\Z;|g_n(x)-g(x)|≧ε})+μ({x∈Z;|g_n(x)-g(x)|≧ε})) (∵測度の定義(可算加法性)) =lim[n→∞](μ({x∈E\Z;|f_n(x)-g(x)|≧ε})+μ({x∈Z;|g_n(x)-g(x)|≧ε})) (∵仮定「f_n=g_n a.e.」) =lim[n→∞](μ({x∈E\Z;|f_n(x)-g(x)|≧ε})+0) (∵零集合の定義) =lim[n→∞]μ({x∈E\Z;|f_n(x)-g(x)|≧ε}+μ({x∈Z;|f_n(x)-g(x)|≧ε})) (∵零集合の定義) ≧lim[n→∞]μ({x∈E\Z;|f_n(x)-g(x)|≧ε}∪{x∈Z;|f_n(x)-g(x)|≧ε})) (∵測度の定義) =lim[n→∞]μ({x∈E;|f_n(x)-g(x)|≧ε}+) 即ち, 0<∀ε∈R,lim[n→∞]μ({x∈E;|f_n(x)-g(x)|≧ε})=0. ∴ {f_n}はgに測度収束する。 となったのですがこれで正しいでしょうか?

  • 再:ルベーグ測度,直積測度の零集合

    X,Yをユークリッド空間R^m,R^nの部分ルベーグ測度空間(X,Yはルベーグ可測集合で測度有限)とします。 φ(x,y)をx∈X,y∈Yを自由変数とする論理式、例えば「f(x,y)=g(x,y)」(f,gは可測関数)とします。 「φ(x,y)  a.e ((x,y)∈X×Y)」  ならば  「「φ(x,y)  a.e (x∈X) 」 a.e (y∈Y)」 は成り立ちますか。また、成り立たない場合はどのような反例がありますか。 但し、X×YはXとYの直積測度空間です。簡単な場合として、m=n=1,X=Y=[0,1]としてもらっても構いません。 全くわからないので、よろしくお願いします。

  • 集合の問題!

    集合の基礎的な問題です。 わからなくてかなり困っています! 明日テストがあるので、これらの問題をどうしても理解したいです。 自分で解いてみたのですが、以下のことくらいしかわかりませんでした。 たぶん証明を見れば理解できると思うので、至急回答お願いしたいです。 よろしくお願いします!!>< <問題> 問1:FがΩの集合体であるとき、次を示せ。 (1)Ω∈F (2)A,B∈Fならが、A⊂B,A\B,AΔB∈F (3)A1,A2,…,An∈Fならば、∪(i=1,n)Ai,∩(i=1,n)Ai∈F 問2:集合X,Yの濃度が同じである、すなわちX~Yは同値関係であることを示せ。 問3:ベルンシュタインの定理を用いて、次を示せ。 (1){x|0<x≦1}~{x|0≦x≦1} (2){(x,y)|0<x≦1,0<y≦1}~{x|0≦x≦1,0≦y≦1} (3)a<bであるとき、[a,b]~R^2 (4)a<bであるとき、[a,b]~D 但し、D⊂R^2でDは少なくとも1つの内点をもつ。 問4:Fをσ集合体とするとき、以下を示せ。 A1,A2,…,An,…∈F ⇒ ∪(i=1,∞)Ai∈Fとするとき    (i)∩(i=1,∞)Ai∈F    (ii)lim(n→∞)supAn∈F ※問4は記述がわかりづらいですが、A1から始まる無限大の和集合がFに含まれる、(i)はA1から始まる無限大の積集合である、という意味です。(ii)はn→∞がlimの下にくれば正しい記述になります。問1の(3)の記述も同じくです。 <考えたもの> 問2:X~Yということから濃度の定義より、XとYの間には全単射がX→Yが存在する。その上で、反射律・対称律・推移率を示せばよい。 という考えまでは至ったんですが、やってみようとしてもここからの証明の仕方というか記述の仕方がわかりません… 問4:(ii)は、lim(n→∞)supAn∈F=∩(i=1,∞)(∪(i=1,∞)Ai):上極限集合 なので、これがFに含まれることを証明すればいいんだろうとは思うのですが記述の仕方がいまいちわかりません。(i)もどのように記述していけばよいのでしょうか? 問1、問3は証明の見通しが立ちません…。 特にこの2つがわからないです。

  • Lebesgue測度μではμ(S\T)=μ(S)-μ(T)と変形できるの?

    Cantor集合の説明で [0,1]を3等分して(1/3,2/3)を取除くと[0,1/3]と[2/3,1]が残る。次に[0,1/3]と[2/3,1]を3等分して (1/9,2/9),(7/9.8/9)を取除く。 n回目には長さ1/3^nの区間2^(n-1)を取除いた事になるので取除かれた区間全体Gの長さμ(G) (μはLebesgue測度)は Σ[n=1..∞]2^(n-1)/3^n=1 …(1) 従って μ([0,1]\G)=μ([0,1])-μ(G)=(1-0)-1(∵Lebesgue測度の定義と(1))=0 でこの差集合[0,1]\GをCantor集合という。 でμ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのか分かりません。 Lebesbue測度の定義は下記のとおりだと思います。でもどうしても差集合のルベーグ測度が夫々のルベーグ測度の差になる事が導けません。μ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのでしょうか? [定義]Aを全体集合,B⊂2^Aとする。BがA上でσ集合体をなす時,AはBの可測空間をな すと言い,(A,B)と表す。 [定義] (A,B)を可測空間とする。写像f:B→R∪{+∞}は(A,B)上で測度をなす。 ⇔(def) (i) ∀A∈B,f(A)∈{r∈R;0≦r}∪{+∞},f(φ)=0 (ii) ∀m,n∈N\{0} (m≠n), b_m,b_n∈B且つ b_m∩b_n=φ⇒f(∪[k=1..∞]b_k)=Σ[k=1..∞]f(b_k) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度をなす。 ⇔(def) (i) f(2^A)⊂[0,∞],特にf(φ)=0 (ii) C⊂D(C,D∈2^A)⇒f(C)≦f(D) (iii) f(∪[n=1..∞]C_n)≦Σ[n=1..∞]f(C_n) (C_n∈2^A (n∈N)) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度とする。E(⊂A)は(A,B)上でf-可測 (集合)。 ⇔(def) ∀C∈2^A,f(C)=f(C∩E)+f(C∩E^c) [定義] R^nのm次元区間全{Π[i=1..m](a_i,b_i]\ {∞};a_i,b_i∈R∪{∞}(i=1,2,…,m)} (m≦n)をI(m,n)で表す。 [定義] R^nのm次元区間塊全体{∪[j=1..k]I_i;k∈N\{0},I^m∋I_1,I_2,…,I_k:互い に素}をC(m,n)で表す。 このとき,C(n,n)はR^nで有限加法族をなす。 [定義] 写像g:∪C(n,n)→R^nを C(n,n)∋∀∪[i=1..k]Π[ji=1..n](a_ji,b_ji]→g(∪[i=1..k]Π[ji=1..n](a_ji,b_ji]):= Π(b_i-a_i) (k=1且つΠ[i=1..n](a_j1,b_j1]は有界の時) sup{Π[i=1..n](d_i-c_i);(Π[j1=1..n](a_j1,b_j1]⊃)Π[i=1..n](c_i,d_i]は有界} (k=1でΠ[j1=1..n](a_j1,bj1]は非有界の時) 0 (k=1でΠ[j1=1..n](a_j1,b_j1]=φの時) Σ[i=1..k]g(Π[ji=1..n](a_ji,b_ji]) (k>1で ∪[i=1..k]Π[ji=1..n](a_ji,b_ji]∈C(n,n) (但し ,Π[j1=1..n](a_j1,b_j1],Π[j2=1..n](a_j2,b_j2],…,Π[jn=1..n](a_jn,b_jn]は互 いに素)の時) と定義するとこのgは可測空間(R^n,C(n,n))での有限測度をなす。 そして写像h:2^(R^n)→Rを2^(R^n)∋∀A→h(A):= inf{Σ[k=1..∞]g(E_k);A⊂∪[k=1..∞]E_k (E_k∈C(n,n) (n∈N\{0}))} で定義するとこのhは可測空間(R^n,C(n,n))で外測度をなす。 この時,このhをLebesgue外測度という。 [定義] 写像h:2^(R^n)→R∪{+∞}はルベーグ外測度とする。 L:={E∈2^(R^n);Eは可測空間(R^n,2^(R^n))上でh-可測}をLebesgue可測集合全体の集 合という。 [定義] hをLebesgue外測度とする。制限写像h|Lは測度をなす。 この時,この制限写像h|HをR^n上のLebesgue測度という。