• ベストアンサー

微積分の問題です。

微積分の問題です。 f(x,y):R^2上の実数値C^1級関数 g(x):R上の実数値C^1級関数 F(x)=int{_0^g(x)}f(x,y)dy x∈R これがC^1級であることを示し、その導関数F'(x)を求めよ。 これはF(x)が連続であることを示して、F(x)の一回微分が一様連続であることを示すんですよね? この問題でR上連続はどのようにしたら示せますか? よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

まづ、微分可能性の証明に先立ち、 微分可能と仮定して、導関数を求めて しまいましょう。 値が判れば、微分係数の定義に従って 平均変化率の収束を示せばよいです。 導関数を計算するときには、 F = ∫[0≦y≦s] f(t,y) dy を 多変数合成関数の微分則を使って dF/dx = (∂F/∂s)(ds/dx) + (∂F/∂t)(dt/dx) とし、 s = g(x), t = x を代入して整理すればよい。 具体的に F' が求まってしまえば、 連続性も容易に示せますね。

harumaaa
質問者

お礼

ありがとうございました

関連するQ&A

  • 微分 積分の問題です。

    微分 積分の問題です。 int(_0^g(x))f_x(x,y)dy これはこれ以上計算できますか? よろしくお願いします。

  • 積分

    a が実定数で平面R^2上で定義された関数 f(x, y) =(x^2 + sin^2y)^a ((x, y)≠(0, 0)のとき) 0 ( (x, y) = (0, 0)のとき) で 1) f がR^2 上で連続的微分可能,すなわち,f が偏微分可能でかつf の 偏導関数が連続であるためのa に関する必要十分条件を求める問題 2) 積分∫_(0<x^2+y^2≤1)f(x, y)dxdy が収束するためのa に関する必要十分条件を求める問題 がわかりません。 どなたかお願いします。

  • 合成関数の積分

    こんにちは。積分法に関する質問です。 gが(a,b)において連続[a,b]において微分可能とし、g´(x)>0で、fもgの値域においては連続とするとき ∫f(g(x))g´(x)dx(積分範囲はaからb)=∫f(y)dy(積分範囲はg(a)からg(b))が成り立つことを示し、(Fоg)´(x)を計算せよという問題です。((Fоg)は合成関数) 今ヒントが与えられていて g(a)≦y≦g(b)において F(y)= ∫f(t)dt(積分範囲はg(a)からy)と置く。とあるのですが、このヒントをどう使うのかが分かりません。 それと(Fоg)´(x)の計算もお手上げです。 どなたかヒントよろしくお願いします。

  • 不定積分についてです

    (置換積分) f:[a,b]→[c,d]がC^1級でg:[c,d]→Rが連続であるとき次の式が成立する ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy この定理が成り立つのは良いのですが,不定積分について ∫g(f(x))f'(x)dx =∫g(y)dy が成り立つ理由がわかりません… 部分積分も同様に,定積分の式ならわかるのですが、不定積分について ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) となる理由がわかりません。 大学数学での不定積分のきちんとした定義とともに、 ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) の成り立つ理由がわかる方がいらっしゃいましたら回答よろしくお願い致しますm(__)m

  • 線積分における完全微分性および積分路に対する独立性について

    cを経路とすると、 ∫c {F1(x,y)dx+F2(x,y)dy} について、∂F1/∂y=∂F2/∂x が成り立つとき、F1(x,y)dx+F2(x,y)dyは完全微分であると言い、 ∫c {F1(x,y)dx+F2(x,y)dy}は、経路に関係なく始点と終点 だけで決まるというようなことを習いました。 ここで、 ∫c {F1(x)dx+F2(y)dy} は、∂F1/∂y=∂F2/∂xが成り立つので始点と終点を指定して 積分すれば良いということになるのですが、 ∫c {F1(x)dx+F2(y)dy}は、始点と終点を指定して 積分すれば良いということを「直接」偏微分で考えずに、 もっと初等的に、(線)積分の意味などから 考える方法はありませんか? 自分で考えてみたところ、「∫c F1(x)dx では、 F1はxの関数なので、xの値にのみ依存し、例え経路c上の 座標(x,y)が(5,9)であろうと(5,3)であろうとxの値は5になるので、 ∫c F1(x)dxは経路に依存せず、始点と終点を定めて計算すれば 良い」という説明になるのかな?と思いました。 たぶんこれは、∂F1/∂y=∂F2/∂xが成り立つことを間接的に説明 しているように思えるのですが… この説明はこの説明で良いのでしょうか? 他の説明の仕方があれば教えてください。お願いします。

  • 積分の最小値の問題がわかりません

    R×R上の連続な関数f(x,y)>=0, ∬ f dxdy = 1, ∬(x^2+y^2) f dxdy < ∞(ただし、∬はx, yについて[-∞,∞]での積分を意味するものとする)。このとき、 (1) 以下のコーシー・シュワルツの不等式を示せ(これはできました)。 {∬xy f dxdy}^2 <= ∬x^2 f dxdy × ∬y^2 f dxdy (2) ∬{y-g(x)}^2 f dxdy を最小にするxの関数 g(x) を求めよ。 おそらく(1)の不等式を使うのでしょうが、どうすればg(x)が一意に定まるまでに変形できるのかがわかりません。 よろしくお願いします。

  • 微分の問題です。

    微分の問題です。 f(x,y)はR^2上の実数値C^1級関数なら、xとyについてそれぞれ偏微分可能ですか? よろしくお願いします。

  • 数学(微積分)の問題です。

    数学(微積分)の問題です。 2変数関数f=f(t,s)はR^2上定義されたC^1関数とすsる。 (1)F(t,x)=∫[0~x]f(t,s)dsは(t,x)のC^1関数であることを示せ。 (2)g(t)=∫[0~t]f(t,s)dsとおくと、g'(t)=f(t,t)+∫[0~t]ft(t,s)ds (ここでftはfのtでの偏微分) となることを示せ。 1は両辺微分?それで示せたことになりますか? 2は、微分してみましたがあまりうまくいきませんでした。 解答の過程を教えてください。 よろしくおねがいします。

  • 微分と積分の順序交換

    熱方程式 Ut-Uxx=0 (t>0,x∈R) の基本解を (4πt)^(-1/2)・exp(-x^2/4t)=K(t,x)とおきます。 φ(x)をR上有界な一様連続な関数と仮定し、 U(t,x)=∫(R~R)K(t,x-y)φ(y)dy (y∈R)とおきます。 このとき (∂/∂x)U(t,x)=∫(R~R)(∂/∂x)K(t,x-y)φ(y)dy を満たすことを示し、U(t,x)が熱方程式を満たすことを示そうとしています。 そこで、 以下の微分と積分を入れ替える定理を使って証明しようとしています。 定理1 h=h(x,y)は(a,b)×Rで定義された関数で、次の性質を持つ (1)ほとんどすべてのyについてhはxの関数とみて(a,b)でC1級である (2)∂h/∂xは(a,b)×Rで可積分とする (3)少なくとも1点c∈(a,b)でh(c,y)はR上可積分とする (4)∫(R~R)(∂h/∂x)dyは区間(a,b)の各点xで連続とする このとき∫(R~R)(∂h/∂x)dy=∂/∂x∫(R~R)h(x,y)dyとなる。 この定理を使って、Uが熱方程式を満たすことに苦戦しています。 どなたか行間の空かない詳しい証明をよろしくお願いします。

  • 広義重積分の計算

    広義重積分の計算 領域D = {(x,y)|0≦x≦y≦1}における関数、f(x,y) = x / ((x^2 + y^2)^1/2) の広義の重積分Vを求めよ。 という問題です。 原点で不連続になることが分かります。 解答には、lim{c→+0} ∫{c→1} ∫{0→y} f(x,y) dx dy と載っていました。 自分は先にyで積分した方法で解こうとしたのですが、以下で正しいでしょうか? lim{x→+0} ∫{0→1} ∫{x→1} f(x,y) dy dx xとyの両方が0の時に不連続になるので、x方向とy方向の両方を0に近づけたlimitを取らなければならないのではないかという疑問もあります。 そこのところがよく分かりませんので、よろしくお願いします。