• 締切済み
  • すぐに回答を!

大至急お願いします!解析の問題です!!!!

大至急御願いします!解析の問題です!!!! 分かる範囲でいいので、なるべく詳しくお願いします! 1問でもかまいません!よろしくお願いします! 1. (1)R^2のノルム||・||を一つ選んで、その選んだノルムの定義を記せ。 (2)pを正の定数とし、B={y^→(yベクトル)∈R^2;||y^→||≦p}とおく。 ある定数M>0が存在し、任意のy^→=(y1),z^→=(z1)∈Bに対して (y2) (z2) |y1^2-z1^2|≦M||y^→-z^→||,|y2^2-z2^2|≦M||y^→-z^→||,|y1y2-z1z2|≦M||y^→-z^→|| が成り立つことを示せ。 (3)Iを有界閉区間とし、a(x),b(x),c(x),d(x)はI上の連続関数とする。R^3の領域 E=I×B={(x,y^→);x∈I,y^→∈B} において、微分方程式 (y1)´=(a(x)y1^2+b(x)y2^2) (y2) (c(x)y1y2+d(x) ) の解は、I×B内に任意に与えられた初期条件に対して一意的に存在することを示せ。 (4)前問の微分方程式について、 I×R^2={(x,y^→);x∈I,y^→∈R^2} においても初期条件に対する解の一意性が成り立つことを示せ。 2. IをRの区間とする。f^→(x,y^→)はI×R^nの連続関数とする。 微分方程式y^→=f^→(x,y^→)については、初期条件に対する解の一意性が成り立つと仮定する。 (1)I×R^n上で||f^→(x,y^→)||が有界であるとき、この微分方程式の任意の解はI全体に延長可能であることを示せ。 (2)ある定数M>0が存在して、I×R^n上で ||f^→(x,y^→)||≦M√||y^→|| が成り立つとき、やはりこの微分方程式の任意の解はI全体に延長可能であることを示せ。 3. 微分方程式(y^→)´=f^→(x,y^→)について、初期条件に対する解の一意性が成り立っているとする。 この微分方程式の、初期条件y^→(a)=b^→をみたす極大延長解を p^→(x,a,b^→)で表し、その定義される区間をIとする。このとき、任意のa1∈Iに対して、 p^→(x,a1,p^→(a1,a,b^→)=p^→(x,a,b^→) (任意のx∈I) が成り立つことを示せ。 よろしくお願いします!!!!!

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • R_Earl
  • ベストアンサー率55% (473/849)

> 1. > (1)R^2のノルム||・||を一つ選んで、その選んだノルムの定義を記せ。 ノルムは色々な種類があります。 なのでまずどんなノルムがあるのかを調べて下さい。 その中でどれでも良いので、好きなノルムを1つ選んで下さい。 その選んだノルムの定義を書けば良いです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 1階線形偏微分方程式の一般解

    数学のことでちょっと皆様のお知恵を拝借いたしたく質問します。 次の偏微分方程式の一般解の求め方を教えてください。 ∂T(x,t)/∂t + (q(t)/S)(∂T(x,t)/∂x) = c(T_w(x,t) - T(x,t)) c,S:定数 僕の所有する参考書によるとこの種の方程式は ラグランジュの偏微分方程式と呼ばれていて、 ちょっとだけ一般解の求め方が書いてありました。 しかし、どうしても一般解にたどりつけません。 その方法とは、偏微分方程式 P(x,y,z)(∂z/∂x) + Q(x,y,z)(∂z/∂y) = R(x,y,z) に対して連立補助方程式 dx/P = dy/Q = dz/R を解いた解を f(x,y,z) = a, g(x,y,z) = b (a,bは積分定数) とする。φを任意の関数として、一般解は  φ(f,g) = 0 である。 という解法です。しかし、T_wが邪魔でうまくいかないです。 詳しい参考書を手に入れようにも近くに本屋がないのでお手上げです。 どなたかご教授お願いしますm( _ _ )m

  • 解析学の問題

    難問のためお力添え頂ければ幸いです。長文ですが失礼致します。問題文は一応写真にも載せておきます。 定数係数のn階線形微分方程式 z^(n)+a1z^(n-1)+a2z^(n-2)・・・+an-1z'+anz=0 (‪✝︎)の特性方程式をf(p)=0とおく。また、(✝︎)において、y1=z^(n-1)、y2=z^(n-2) ... yn-1=z’、yn=z と変数変換すると、y1、y2・・・、ynに関する連立線形微分方程式が得られるが、その連立線形微分方程式の係数行列をAとおく。 このとき、(✝︎)の特性方程式f(p)=0の解と係数行列Aの固有値との関係について述べなさい。

  • 微分方程式の問題で

    微分方程式の問題で 「a,bが任意定数のとき、次式が一般解になるような最小階数の微分方程式を示せ。  y = ax^2 + 2bx」 の答えがわかりません。 答えは一階の微分方程式で (dy/dx) + y = ax^2 + 2(a+b)x +2b となるのか 二階での微分方程式で x^2 * y" - 2xy' +2y = 0 となるのかで迷っていて、 一階の微分方程式が特殊解なのか一般解なのかの判断がつかないと言う状況です。 というのも教科書には 「限定状況を与えなければn階の微分方程式にはn個の任意定数を含む」 とあるのですがこの限定条件がわからなくて判断がつきません。 どちらが正しいのでしょうか?

  • 微分方程式の問題です。

    以下の問題の解答のチェックをお願いします。 図のyに関する微分方程式について、以下の問いに答えよ。 (a)y=e^zとおき、微分方程式をzに関する微分方程式に書き換えよ。 (b)dz/dx=v とおき、(a)で得られた微分方程式をvについて解け。 (c)微分方程式(1)の一般解を求めよ。 (a) z''-2(z')^2-z'=0 (z'=dz/dx) (b) v=Ce^x/(1-2Ce^x) (c) y=C1・(1-C2e^x)^(-1/2) 特に(c)が自信がありません。。。

  • 微分方程式の初期値問題

    友達とも考えてみたのですが、どうにもわからないので質問します。 以下の微分方程式の初期値問題の解を求めよ。 y''+y=r(x) y(0)=0,y'(0)=0 (0≦x≦π)の時 r(x)=1-(x/π) (x>π)の時   r(x)=0 0≦x≦πの時は初期条件によってちゃんと任意定数が定まるのですが、x>πの時は初期条件が提示されていないので、任意定数を求めることが出来ませんでした。x>πの時、任意定数を求めることができるかどうか教えてください。よろしくお願いします。

  • 微分方程式に関する問題です。

     dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 途中の計算などもできれば詳しくお願いします。

  • 微分の問題について教えてください

    実数全体において2回微分可能な関数y=y(x)について次の微分方程式を考える。 (*)d^2y/dx^2-2dy/dx-3y=0 (1)y=e^axが上記の常微分方程式(*)の解になるとき実定数aの値を求めよ。 (2)y1(x), y2(x)がともに常微分方程式(*)の解ならば、任意の実定数λ,μに対して   λy1(x)+μy2(x)も(*)の解になることを示せ。 (3)y(0)=1, y'(0)=2を満たす(*)の解y(x)を求めよ。 以上の問題の回答についてどうか御教授願います。

  • 微分方程式の初期値問題について

    微分方程式の初期値問題について a,bは正の定数とする。初期値問題 dy/dx+y=b√y ,y(0)=a^2 …(*) について (1)u=√y と置くとき、uの満たす微分方程式を求めよ (2)初期値問題 (*)を解け (3)(*)の解yに対し,極限lim[x→∞]y(x)を求めよ (1)のyをu^2、√yをuと置き、そこでもう詰まってしました。 ここからどう解けばいいんでしょうか? 解き方、考え方、必要な公式を教えてください。

  • 微分方程式の問題お願いします

    微分方程式の問題お願いします インダクタンスL、容量C、抵抗Rと電源を直列に接続する この電気回路を流れる電流I(t)は次の2階微分方程式を満たすとき以下の問いに答えよ L*d^2I/dt^2+R*dI/dt+I/C=dV/dt・・・(1) (1)V(t)=Eのとき(1)の一般解を求めよ (2)V(t)=sint、 L=R=C=1とする (1)の特解を,I(t)=acost+bsintとしたとき、aとbを求めよ この微分方程式を解け (3)dy/dx=-(x^3+4x^3y^3)/(y^2+3x^4y^2) (3)しかできなくて x^4/4+x^4y^3+y^3/3=Cとなりました 残りの問題お願いします

  • 2階微分方程式が解けません

    [y''+y'/x-y/x^2=0 を解け] という問題を見かけたのですが,どのように解けばいいのかわかりません. (1)2階微分方程式にyが含まれないときはy'=pとおき,y''=dp/dxとして解く. (2)d^2y/dx^2=ky(k:定数)のときは公式がある. (3)y''+ay'+by=R(x)(a,b:定数,R(x):xのみの関数)のときは補助方程式の一般解と特殊解を求めて解く というのは教科書に書いてあったのですが,今回の問題はこの中のどの方法を使えば解けるのでしょか? 解答にはy=Ax+B/x(A,B:任意定数)とあります.