• ベストアンサー

2次元では、ボーズ・アインシュタイン凝縮は起こらない理由

2次元では、ボーズ・アインシュタイン凝縮は起こらないそうなのですが、これを示す方法がどうしてもわかりません!問題の設定としては、 2次元において、1粒子状態密度:D(ε)を求め、全粒子数NをN=∫D(ε)n(ε)dε ( n(ε)=1/{EXP(β(ε-μ))-1} :Bose分布関数)から求め、また、全エネルギーEをE=∫εD(ε)n(ε)dε より求め、それらを使い、圧力P=nu  (n=N/V,u=E/N) として、温度Tの関数として求める。P一定の元に温度を下げた場合、到達可能な温度のい限界が生じることになる。その限界の温度を求めよ。 という問題でPをTの関数として求めるところまでは解りましたが、なぜ限界温度が存在するのかということ及びその温度を求める方法がわかりません。 ちなみに私の計算ではP={2πmh^(-2)(kT)^2}Σ{EXP(-nμ/kT)}/n^2 (Σはn=1から∞の和) となりました。(自信はありません)

  • divib
  • お礼率55% (15/27)

質問者が選んだベストアンサー

  • ベストアンサー
  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.2

grothendieck さんが本を紹介しておられますので ちょっとだけコメントしておきます. 今,私の手元にはその本がありませんので,もしかしたら重複があるかも知れません. Bose 分布関数を用いているのは大正準集合の手法に基づくもので, 指定されているのが体積 V,温度 T,化学ポテンシャル μ,で 化学ポテンシャルに共役な粒子数 N は指定されていません. 熱力学的極限では,指定された量のゆらぎなどを除いては, 大正準集合でも正準集合(V,T,N を指定)でも同じ結果が得られます. さて,粒子数 N を指定しておいて大正準集合の方法を用いているのですから, μはいわばダミーで,最終的には大正準集合の方法で得られた粒子数期待値 <N(μ)> が N に等しくなるようにμを決めるわけです. で,質問にあるように,ある温度以下では合理的なμが求まらなくなります. この温度がボーズ・アインシュタイン凝縮(BEC)温度です. どうしてこうなるかの秘密(?)は状態密度 D(ε)にあります. 3次元自由粒子では D(ε) ∝ √ε ですので, ε=0 の状態(すなわち基底状態)は波数 k の和をε積分近似すると 含まれなくなります. つまり,本当は基底状態は別に扱わないといけない. 基底状態に存在する粒子が少数(N のオーダーではないという意味)のときは 熱力学的極限をとればそんなものは効きませんが, オーダー N の粒子が基底状態にあるとなると話は別です. それでは,2次元ではどこが違うのか? 2次元では D(ε) が定数ですので,積分近似で基底状態の寄与が消えてしまうことが ありません. これが2次元でBECの起こらない本質的理由でしょう. あと,D(ε)のε依存性は次元の他に分散関係(すなわち ε(k)の形)にも シビアに依存します. したがって,固体中などでボース粒子(or 準粒子)が自由粒子と違う分散関係を 持っていれば2次元や1次元でBECが起こる可能性はあります.

divib
質問者

お礼

詳しい回答ありがとうございました!質問したあとも色々考えまして、皆様の助けもあり、納得することができました。でも、自然界でおきる現象が次元によるなんて!!? 不思議ですよね?面白いです!!これからもがんばります!

その他の回答 (1)

回答No.1

divibさん、こんにちは。2次元ではBose-Einstein凝縮は起らず、3次元では相転移温度以下でBose-Einstein凝縮が起ります。したがって温度に最低値があるのは2次元ではなくて、3次元なのではないでしょうか。 なお、2次元でBose-Einstein凝縮が起らないことについては  川村光:「統計物理」(パリティ物理学コース) などを御覧下さい。

関連するQ&A

  • 粒子数の平均を出す

    以下の問題がわかりません。 磁場に対して平行か反平行かをとるスピン1/2の粒子(磁気モーメントμ)N個からなる系がある。この系が上向きの一様な磁場H中で温度Tで熱平衡状態にあるとき、ある特定の粒子に着目し、ほかのN-1個の粒子は熱浴とみなして、この粒子が温度Tの熱浴と平衡を保っていると考えることができる。 1.上向きのスピンの粒子数の熱平均と下向きのスピンの粒子数の熱平均との比を求めよ 自分は以下のように考えました。 一粒子状態における粒子数の平均はボルツマン因子exp(-E/kT)で表わされるので、上向きのスピンの粒子数の平均はexp(μH/kT)、下向きのスピンの粒子数の平均はexp(-μH/kT)。 よってこれらの比はexp(2μH/kT)である。 この考えは正しいでしょうか?正直まったく自信ありません。 それともやはり分配関数Zを考えて <n↑>=Σ(n↑)exp(μH/kT)/Z とかするのでしょうか?

  • Bose粒子系における基底状態と励起状態の粒子数の比

     エネルギー0≦ε<∞のBose粒子系において、T<T_〔C〕(T_〔C〕:臨界温度)ではN'=N'|_〔μ=0〕であるとして  N_〔0〕/N=1-{(T/T_〔C〕)^(3/2)} を確かめようと思っています。  全粒子数Nを基底状態(ε=0)の粒子数N_〔0〕と励起状態(ε≠0)の粒子数N'の和で表し、後者を連続近似でN'=∫〔0~∞〕f_〔B〕D(ε)dεと書く、とすることや等式 [2/{π^(1/2)}]∫〔0~∞〕[(x)^(1/2)/{exp(x)-1}] を何処かで用いることは分かるのですが…。  誠に恐縮ですが、どなたか御回答を宜しく御願い申し上げます。

  • Bose粒子系における基底状態と励起状態の粒子数の比

     エネルギー0≦ε<∞のBose粒子系において、T<T_〔C〕(T_〔C〕:臨界温度)ではN'=N'|_〔μ=0〕であるとして  N_〔0〕/N=1-{(T/T_〔C〕)^(3/2)} を確かめようと思っています。  全粒子数Nを基底状態(ε=0)の粒子数N_〔0〕と励起状態(ε≠0)の粒子数N'の和で表し、後者を連続近似でN'=∫〔0~∞〕f_〔B〕D(ε)dεと書く、とすることや等式 [2/{π^(1/2)}]∫〔0~∞〕[(x)^(1/2)/{exp(x)-1}] を何処かで用いることは分かるのですが…。  誠に恐縮ですが、どなたか御回答を宜しく御願い申し上げます。

  • ゾンマーフェルト展開

    エネルギーEとE+dEの間にある電子の数n(E)dEは n(E)dE=Z(E)F(E)dE Z(E):単位体積、単位エネルギーあたりの状態密度 F(E):フェルミ・ディラックの分布関数 F(E)=1/(1+exp[(E-E_f)/kT]) T:絶対温度 E_f:フェルミ準位 電子の状態密度は Z(E)dE=(4π/h^3)*(2m)^(3/2)e^(1/2)dE m:固体中での電子の有効質量 h:プランク定数 T=0Kでは n=(4π/h^3)*(2m)^(3/2)∫[0~E_f0]e^(1/2)dE E_f0:T=0KのときのE_f 変形するとE_f0=(h^2/2m)(3n/8π)^(2/3) T>0Kのときは n(E)=∫[0~∞]Z(E)dE/(1+exp[(E-E_f)/kT]) ここでE_f>>kTとすると E_f≒E_f0[1-(π^2/12)(kT/E_f0)^2] この式を導こうとしていたところです。 先日、回答者の方からのお力をいただきまして、 以下のように計算してみました。 フェルミ分布関数fはT=0でステップ関数なので、df/dE はδ関数。ところが有限温度だとステップがぼやけるため、df/dE はガウス関数で近似できる。 n(E)=∫[0~∞]Z(E)dE/(1+exp[(E-E_f)/kT]) dF(E)/dE≒-(1/sqrt(2π))exp(-((E-E_f)^2/2σ^2)) F(E)=1/(1+exp[(E-E_f)/kT])の導関数にE=E_fを代入した式=-1/4kT≒(-1/sqrt(2π)) σ=2sqrt(2)kT/sqrt(π) 部分積分を行う。 n(E)=4π/h^3(2m)^(3/2){[F(E)・(2/3)E^(3/2)]_0^∞-∫(0→∞)(dF/dE)(2/3)E^(3/2)dE} =(2/(3sqrt(2π)σ))∫(0→∞)exp(-(E-E_f)^2/2σ^2)E^(3/2)dE ここでいきづまっています。3/2乗に2乗の指数関数が出てきていて、どう積分したものやらと思っております。ゾンマーフェルト展開についてのっている本だけでも紹介していただけないでしょうか。少しでも助言をお願いします。

  • 一次元調和振動子の平均のエネルギー<E>

    温度Tで、質量mのバネがボルツマン分布する時の平均のエネルギー<E>を知りたいのですが、 <E>=∬Eexp(―E/kT)dxdp/∬exp(―E/kT)dxdp          (kはボルツマン定数、pはX方向の運動量、E=1/2・a2乗・ω2乗) の解き方がよくわかりません。どうしたら、いいんでしょうか?

  • 二次元のtとnに関する漸化式

    二次元のtとnに関する漸化式 P(t,n)=P(t-1,n-1)/2 + P(t,n+1)/2 + a * (1/2)^(N-n+1) 初期条件:P(0,n)=0 境界条件:P(t,0)=0 は解けるでしょうか?お分かりの方はどうかご教授ください。よろしくお願いいたします P(t,n)=P(t-1,n-1)/2 + P(t-1,n+1)/2 + a * (1/2)^(N-n+1)についても同様に教えていただければと思います。(左辺第二項のt→t-1となっています)

  • 熱統計力学 分配関数について

     E1,E2,E3という3つのエネルギー状態を持てる粒子数N個の系を考える。系の温度はτとする。Nが十分に大きいとき、系の全体のエネルギーがU0となる場合の粒子数Nを求めよ。 上記のような問題が出されました。私の解答としては、 分配関数 Z(τ)=exp(-E1/τ)+exp(-E2/τ)+exp(-E3/τ) よって平均エネルギーは U={E1exp(-E1/τ)+E2exp(-E2/τ)+E3exp(-E3/τ)}/Z(τ) したがって NU=U0;よりN=U0/U  という解答を出しましたが、平均エネルギーがUを単純にN倍したのが系全体のエネルギーU0になるとして良いのか不安です。また、Nを十分大きくとる理由がわかりません。熱力学はまだ習ったばかりで正直この解法も正しいのか疑問です・・・・。  どんなわずかなことでも良いので回答を下さい。

  • ランダウ量子力学 第二量子化(ボーズ粒子の場合)

    小教程を読んでいるのですが… ボソンの系のN個粒子の波動関数 Ψ=(N_1!…/N!)^(1/2)ΣΨ_p1(ξ1)Ψ_p2(ξ2)…Ψ_pN(ξN) について、 f^(1)_a をa番目の粒子に関する物理量演算子とした上で、全ての粒子について対称な演算子F^(1)=Σf^(1)_a の行列要素の求め方がまったく載っていません。 <N_i, N_k-1 | F | N_i-1, N_k>=f _ik√NiNk として答えが載っていますが、 Ψ_1=(N_1!…N_i-1!/N!)^(1/2)ΣΨ_p1(ξ1)Ψ_p2(ξ2)…Ψ_pN(ξN) Ψ_2=(N_1!…N_k-1!/N!)^(1/2)ΣΨ_p1(ξ1)Ψ_p2(ξ2)…Ψ_pN(ξN) として ∫Ψ*_1FΨ_2 dξ を計算すればよいのでしょうか?? それでも、とても簡単とはいかなさそうなのですが… 指針やアドバイスだけで構わないので、どなたかご教授お願いできますか。 よろしくお願いします。

  • 統計力学の質問です

    エネルギーとして+εか-εしか取れないN個の粒子が 温度Tで熱平衡状態にある系について考えています。 エネルギーが+εの粒子の個数をN+ -εの粒子の個数をN-として M = N+ - N- と置きます。 このときN+及びN-を温度Tの関数として表せ、という問題です。 とりあえず分配関数などを計算したりしてみたのですが、なかなか解答に辿りつけません。 解法等をご教授いただけるとありがたいです。

  • グランドカノニカル

    今、古典統計力学に従う単原子分子の理想気体について、グランドカノニカルの分配関数を求める問題を調べていたのですが、参考書によって答えが違いどちらが正しいかわからず困っています。どなたか教えてください。 (1)exp(V*(mkT/2πh^2)^3/2*(e^(μ/kT)) (2)exp(V/h^3*(2πmkT)^3/2*(e^(μ/kT)) たぶん、これは理想気体のカノニカル集団の分配関数が違うからだと思うんですが…。 Z=1/N!*V^N/(2πh)^3N(2πmkT)^3N/2 Z=1/N!*V^N/(h)^3N(2πmkT)^3N/2のどちらが正しいのでしょう?