• 締切済み

一次元自由粒子

一次元自由粒子が・・・ 長さLの領域に閉じ込められている場合、波動関数をφとして境界条件φ(0)=φ(L)=0を元にシュレディンガー方程式を解くと φ(x)=(2/L)^2sin(kx)、k=πn/L(n=1,2,) 長さLの輪を自由粒子が運動している場合、周期的境界条件φ(x)=φ(x+L)を元に φ(x)=(1/L)^2exp(ikx) 、k=2π/L(n=0,±1,±2,)  なのですが、なぜ境界条件のとき波束kは自然数で、周期的境界条件のとき波束は全ての整数になるのですか???

みんなの回答

  • sanori
  • ベストアンサー率48% (5664/11798)
回答No.2

考え方は単純で、 複素指数関数e^(iθ)、すなわち、複素数 cosθ+isinθ は、2次元ベクトルと同じだからです。 反時計回りと時計回りとで、 cosθ+isinθ と cosθ-isinθ という、必ず2つのペアがあります。 しかしながら、 n=0というのは、粒子がある場所から、正確に中心に向かう方向に輪っかを手で揺すっているから、粒子が止まってるようなイメージなんでしょうけど、 それだったら、棒の場合も、棒の長さ方向と垂直に揺すれば止まりますよね。 輪っかと平等に考えるなら、n=0 も・・・?

noname#21219
noname#21219
回答No.1

sinkx=(e^ikx-e^-ikx)/2iと書き換えられます。 一方、量子力学では、波動関数を定数倍したものは もとの波動関数と代わらないという性質があります。 (波動関数は線形性を持つといったりします) で、仮に固定端境界条件の場合に『n=-m(m>0』という負の 整数が解になるとしてみましょう。 このときk=-πm/L≡-k'(k'=πm/L ですが、sinkx=(e^ikx-e^-ikx)/2i =(e^-ik'x-e^ik'x)/2i=-(e^ik'x-e^-ik'x)/2i =-sink'xとなります というか、sin(-kx)=-sinkxを使ってもいいですが とにかく負の整数n=-mを解として採用したとしても それに対応する波動関数は、n=mという自然数 の場合の波動関数、に単にマイナスをかけたものに 等しくなるから、状態は同じになります。だから固定端(sinkx)条件では、自然数だけでよいことになります。負の整数も採用すると、解を2回カウントすることになります。 周期境界条件では、Ce^ikxという波動関数が解 ですが、この場合負の整数を採用すると、状態は 正のときと異なります。つまり、e^ikxとe^-ikxの 状態は異なります。古典的な描象では、粒子の進行方向が右向きか左向きか、で区別していることになります。

hi-ron
質問者

お礼

分かりやすい回答ありがとうございます。 参考になりました!

関連するQ&A

  • 束縛粒子と自由粒子

    量子力学における疑問です。 束縛粒子と自由粒子。どちらもシュレーディンガー方程式を満足する粒子にもかかわらず「前者はとびとびの波数kをもち、後者のkは連続的な値をとれる」ということに多少疑問がありました。 参考書を読んで、「自由粒子はマシンなどでエネルギーを決めて打ち出すので、束縛粒子のような制約(とびとび)を受けない」らしいところまで理解しました。 そこで自分の解釈として『自由粒子における問いは、束縛粒子のような「その状態がどうなっているか解析する」ものではなく、「打ち込んだ自由粒子によって波束(これはきっと自由粒子をぶつけられた物質か何かの)にどのような変化がおきるか」という動的な命題を扱っている』と考えてみたのですがどうでしょう。 数式ばかり追っていて、具体的にどういう状態を扱っているのか迷ってしまったので、ご意見を伺いたく、質問いたしました。 よろしくお願いします。

  • 量子力学の問題(時間依存の方程式)

    量子力学で以下のような問題を解きたいです。 「1次元空間内で質量mの粒子がポテンシャルV=0で自由に運動している。 時刻t1で粒子の位置はx1であった。時刻t2(>t1)で粒子の波動関数を求め、粒子がt2でx2に存在する確率を計算せよ。」 自分で考えてはみたのですが正しいのか全く見当違いなのかもわかりません。 自分の考え方が正しいかどうか、また間違ってるのであればどのように考えて解けばいいのか教えてください。 ↓自分の考え↓ まず自由粒子についての時間依存なしのシュレディンガー方程式を立てて、 波動関数ψ=Ae^(ikx)+Be^(-ikx)を求める。 その波動関数に時間に依存する項e^(-iEt/h)をあとでつける。 そして、得られた解にx=x1,t=t1を代入して波動関数の確率分布を求める。 確率分布は実際に観測されているので|ψ|^2=1となる。 ここから A^2+B^2+2ABcos(2kx1)=1 が求められる。 次にt=t2,x=x2についても同様に、|ψ|^2を求めると、 |ψ|^2=A^2+B^2+2ABcos(2kx2)となり、 t=ta,x=x1のときの結果を利用して、 |ψ|^2=1-2AB{cos(2kx2)-cos(2kx1)} となり、定数A,Bが残ったままですが一応確率分布の式を求めました。 この考え方、解き方でいいのでしょうか? 教えてください。

  • シュレーディンガー方程式に関する問題です。

    (1)シュレディンガー方程式において、V(x)=0とする。Φ=Ae^ikx+Be^-ikxのとき、全エネルギーEを求めると、E=(h/2π)^2*(1/2m)k^2であってますか? (2)また、B=0のとき、Φ=Ae^ikxの位置xに粒子を見出す確率密度は|Φ|^2を計算して求めると思うのですが、複素共役のとり方がよくわかりません。複素共役をとって計算するとA^2になると思うのですが、これであってますか? (3)次に、0<x<Lの領域でV(X)=0で、それ以外は無限大であるとする。この粒子の全エネルギーEと規格化された波動関数Φを求める問題ですが、この問題をどのように解けばよいか教えてください。この問題はΦをオイラーの式で展開しないと解けませんか?

  • 箱型ポテンシャルの1粒子束縛問題

     一応手元にある量子力学の教科書二冊を調べながら解こうとしてもよくわからなかったのでヒントでもいいので教えてほしいです。 問題 次のような壁を持つ箱型ポテンシャルの1粒子束縛問題を考えよ。 V(x)=∞ (x<0), V(x)=0 (0<x<a), V(x)=Vo (a,x) と言う条件です。(見にくくて申し訳ありません。)  私はまずシュレーディンガー波動方程式(時間に依らない)を書いて、その後、波動関数の一般解を書きました。 そして境界条件でその一般解を解こうとしました。が形が左右対称ではないからかうまく解けない状態です。

  • 粒子の二次元の回転運動(量子論)

    独学で量子論を勉強している大学一年生です。 早速質問です。 二次元平面で円運動する粒子の波長は、波動関数の周期的境界条件から λ=2πr/n (rは軌道の半径、n=0,1,2…) と表され、ドブロイの式から、粒子の運動エネルギーは E={(nh)^2}/2I (hはディラック定数、Iは慣性モーメント) となるところまではわかるのですが、教科書では、運動エネルギーが出て来たところで突然 n=0,±1,±2…となっています。 マイナスのnは反対周りの回転に対応しているとかいてあるのですが、なぜいきなり負のnを考えるのか、どこから出て来たのかがわかりません。

  • 波動関数からシュレディンガー方程式

    演習問題を解いていていきずまったのですが、 波動関数ψ(x)=Aexp(ikx)+Bexp(-ikx):k,xはベクトル がシュレディンガー方程式を満たすことを示し、そのときのエネルギー分散関数を求めたいのですが、わかりません。どなたか教えてください。

  • エネルギー固有値と規格化された固有関数について

    長さLの1次元の箱の中の自由粒子について、エネルギー固有値と規格化された固有関数を求めるのですが。 φ≡φ(x)を仮定して波動方程式に代入してφで割ると 1/φ・(d^2φ)/dx^2=-(2mE)/hバー^2 左辺の項は定数でないといけないので、コレを-k^2とおいて境界条件を満たすφを求める。 φ=Asin((πn)/L)x,E=((π^2・hバー^2)/(2mL^2))n^2 n=1,2,3・・・・・ であってるのですか?教えてくださいお願いします。

  • トンネル効果 ガウス型関数が障壁の中に入ったら? 

    ガウス型の波束を入射させるトンネル効果についてなんですが、  0<x<aでV=V0(>粒子のE),他ではV=0の箱型ポテンシャルの系で-x方向から+x方向に粒子(ガウス型の波束)を入射します。 ガウス型の波動関数  Φ(x,t)=Aexp{-(x/a)^2}exp(ik0x-iwt) (x<0での波動関数です。) ってポテンシャル障壁の中に入るとどういう関数になるのでしょう?どの参考書にも載っているような定常的な系ならばもとめられるんですが、時間的にも変わるこのガウス関数型の場合はシュレーディンガー方程式と波動関数の連続条件から求められるのでしょうか? 連続条件を考えるときに時間tが入っていると難しいと思うのですが。  返信よろしくお願いします。  

  • 一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くとこ

    一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くところなんですが 全エネルギー E = p^2 / 2m + U(x) --(A) p <- -ih d/dx (hは棒付き) --(B) ∴ H^ = (-h^2 / 2m) d^2/dx^2 + U(x) --(C) において、 (1) (B)運動量演算子 -ih d/dx がいきなりでてくるのがわかりません。教科書など見てもこの導き方が載っていません この運動量演算子というのは波動関数に作用させると運動量になるというものなのでしょうか (2) (C)ハミルトニアンは演算子なのに、U(x)の部分はただのスカラーになっていますがいいのでしょうか (3) (1)で運動量演算子を波動関数に作用させたものが運動量ならば、波動関数に(C)を作用させたものは、(運動エネルギー)+(ポテンシャルエネルギー×波動関数)になってしまいませんか? そうするとシュレーディンガー方程式は (運動エネルギー)+(ポテンシャルエネルギー×波動関数)=(全エネルギー×波動関数) となって、次元が合わないような状況になってしまいませんか? 質問の意味がわからなかったらすぐ補足するので、1つでもいいので教えてください。よろしくお願いします。

  • 三次元の井戸型ポテンシャルについて

    量子力学の質問です。 三次元の井戸型ポテンシャル(一辺Lの立方体)についてなのですが、 (I)箱の端の波動関数を0とする条件 つまりψ(L,y,z,)=ψ(x,L,z,)=ψ(x,y,L)=0 のとき (II)周期的境界条件を条件にした場合 つまりψ(x,y,z,)=ψ(x+L,y,z,)=ψ(x,y+L,z)=ψ(x,y,z+L) という条件のとき とでエネルギー固有値を求めました。 すると(I)は E=h^2/(8πm)・(π/L)^2・{(n_x)^2+(n_y)^2+(n_z)^2} ただしn_x,y,zは0を含まない自然数。 (II)は E=h^2/(8πm)・(2π/L)^2・{(n_x)^2+(n_y)^2+(n_z)^2} ただしn_x,y,z=0,±1,±2... となりました。明らかに(I)と(II)ではエネルギー固有値がちがってきます。 これはなぜなのでしょうか? このほかのフェルミ波数等は同じ値をとるのにエネルギー固有値だけちがうというのはいいのでしょうか?