• 締切済み
  • すぐに回答を!

エネルギー固有値と規格化された固有関数について

長さLの1次元の箱の中の自由粒子について、エネルギー固有値と規格化された固有関数を求めるのですが。 φ≡φ(x)を仮定して波動方程式に代入してφで割ると 1/φ・(d^2φ)/dx^2=-(2mE)/hバー^2 左辺の項は定数でないといけないので、コレを-k^2とおいて境界条件を満たすφを求める。 φ=Asin((πn)/L)x,E=((π^2・hバー^2)/(2mL^2))n^2 n=1,2,3・・・・・ であってるのですか?教えてくださいお願いします。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数2
  • 閲覧数711
  • ありがとう数2

みんなの回答

  • 回答No.2

No.1です。あっていると書きましたが、質問者さんの計算はあっていますが、規格化はされていないことに気づきました。済みませんでした。 実関数ですからこの式を2乗して0からLまで積分した値が1になるようにAを決める必要があります。sin xの2乗は(1-cos2x)/2を知れば簡単ですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

返信おそくなってすみませんでした。 ありがとうございます。おかげでとけました。

  • 回答No.1

あっています。 φを移して(1/φ)(d^2φ)/dx^2=-k^2と書かなくても-2mE/(h/2π)のままで計算続行で構わないとは思いますが...

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • エネルギー量子化

    1次元でのシュレーディンガー波動方程式についてなんですが、これは井戸型ポテンシャルを仮定します。そしてこの井戸型ポテンシャル中の電子エネルギーが量子化される理由ってなんて書けばいいと思いますか? 波動方程式を解いて、Eを求め、境界条件からkが量子化されると思って、それをEに代入すれば量子化されますが、理由は何かということは何か言葉で説明できる現象があると思ったのですが… どなたかご教授願いたいです。よろしくお願いします。

  • 固有値問題 微分方程式

    固有値問題です。 (d^2/dx^2)*u(x)=λ*u(x) 境界条件 du(0)/dx-u(0)=0 du(1)/dx-u(1)=0 (d^2u(x)/dx^2)→u(x)をxで二階微分 u(x)→xを変数とする関数(固有関数) λ→固有値 という問題をλが正の時、0の時、負の時にわけて解きたいのですが解き方がわかりません。 よろしければ教えて下さい。

  • 波動方程式における変数分離法について

    まずu(x,t)の1次元波動方程式{((∂^2)u)/(∂t^2)}=(v^2)*{((∂^2)u)/(∂x^2)}について ここでもし、u(x,y)がxの関数X(x),Tの関数T(t)の積u(x,y)=X(x)*T(t)で表すことができればこの微分方程式を解くことができる。 まずu(x,y)=X(x)*T(t)を代入すると、 {((∂^2)u)/(∂t^2)}=(v^2)*{((∂^2)u)/(∂x^2)}はX*(T'')=(v^2)*(X'')*Tとなり、 これを(v^2)*X*Tで割ると{T''/(v^2)*T}=(X''/X)となる。 この式の左辺はTのみの式、右辺はXのみの式なのでこの式が任意のx,tで成り立つためには{T''/(v^2)*T}=(X''/X)=定数Aとならなければならない。そしてこの定数AについてA<0が成り立つ。 次にu(x,y,t)の2次元波動方程式 {((∂^2)u)/(∂t^2)}=(v^2)*[{((∂^2)u)/(∂x^2)} + {((∂^2)u)/(∂x^2)}]についても同様にu(x,y,t)がxの関数X(x),Yの関数Y(y),Tの関数T(t)の積X(x)*Y(y)*T(t)で表すことができればこの微分方程式を解くことができる。 u(x,y,t)=X(x)*Y(y)*T(t)を上の2次元波動方程式に代入すると、 X*Y*T''=(v^2)*[{(X'')*Y*T}+{X*Y*(T'')}]となり、 この両辺を(v^2)*X*Y*Tで割ると、{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}となる。 この式の左辺はtのみ、右辺はxとyの式なので、この式が恒等的に成り立つためには{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}=定数Aとなる必要がある。そしてA<0でなければならない。 ※以上が変数分離法による1次・2次波動方程式を解く手順ですが、まず1次について「{T''/(v^2)*T}=(X''/X)の左辺はTのみの式、右辺はXのみの式なのでこの式が任意のx,tで成り立つためには{T''/(v^2)*T}=(X''/X)=定数Aとならなければならない」というのは一体どういう意味なのでしょうか? もし左辺がXのみの式でなかったら、例えばXとYの式だったら=定数Aとはおけないのでしょうか? 同じく2次の場合についても、「{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}の左辺はtのみ、右辺はxとyの式なので、この式が恒等的に成り立つためには{(T'')/((v^2)*T)}={(X'')/X}+{(Y'')/Y}=定数Aとならなければならない」とありますが、これもどういう意味なのでしょうか? 詳しいかた教えてください。お願いします。

  • ナブラの計算(波動方程式)

    物理電磁気学の波動方程式のナブラの計算 波動方程式 ∇^2 E=ε_0 μ_0 (∂^2 E)/(∂t^2 )   ∇^2=∂^2/(∂x^2 )+∂^2/(∂y^2 )+∂^2/(∂z^2 )   平面波 E=E_0 e^(i(k・r-ωt))   ik・r =i(k_x x+k_y y+k_z z) 平面波の式を波動方程式に代入すると -k^2 E_0 e^(i(k・r-ωt))=-ω^2 ε_0 μ_0 E_0 e^(i(k・r-ωt)) となる。 この左辺がどのようにしてこの値になるかを教えてください。よろしくお願いします。

  • 箱型(井戸型)ポテンシャル

    このような問題なのですが、教えて下さい。 問1 2次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。          2L│_       │ │        │ │       │_│__x         L                                     【H:エイチバーの意】   H^2π^2         ny^2            エネルギー固有値は E=――――――(nx^2+――――)                       2mL^2          4            (nx=1,2,3・・・)、(ny=1,2,3、・・・)        (1)基底状態のエネルギー固有地をH、π、m、Lで表せ。    (2)第4励起状態(5番目)のエネルギー固有値をH、π、m、Lで表し、      それを与えるnxとnyの組み合わせを全て求めよ。 問2 1次元の無限に深い井戸型ポテンシャルの中の粒子運動を考える。    エネルギー固有関数はφ(x)=√(2/L)・sin(nπx/L)である。    L=1.0×10^-10m として、第1励起状態にある粒子を、    x=0とx=0.25×10^-10mの間に観測する確率を計算せよ。

  • 一次元自由粒子

    一次元自由粒子が・・・ 長さLの領域に閉じ込められている場合、波動関数をφとして境界条件φ(0)=φ(L)=0を元にシュレディンガー方程式を解くと φ(x)=(2/L)^2sin(kx)、k=πn/L(n=1,2,) 長さLの輪を自由粒子が運動している場合、周期的境界条件φ(x)=φ(x+L)を元に φ(x)=(1/L)^2exp(ikx) 、k=2π/L(n=0,±1,±2,)  なのですが、なぜ境界条件のとき波束kは自然数で、周期的境界条件のとき波束は全ての整数になるのですか???

  • 量子力学の問題(時間依存の方程式)

    量子力学で以下のような問題を解きたいです。 「1次元空間内で質量mの粒子がポテンシャルV=0で自由に運動している。 時刻t1で粒子の位置はx1であった。時刻t2(>t1)で粒子の波動関数を求め、粒子がt2でx2に存在する確率を計算せよ。」 自分で考えてはみたのですが正しいのか全く見当違いなのかもわかりません。 自分の考え方が正しいかどうか、また間違ってるのであればどのように考えて解けばいいのか教えてください。 ↓自分の考え↓ まず自由粒子についての時間依存なしのシュレディンガー方程式を立てて、 波動関数ψ=Ae^(ikx)+Be^(-ikx)を求める。 その波動関数に時間に依存する項e^(-iEt/h)をあとでつける。 そして、得られた解にx=x1,t=t1を代入して波動関数の確率分布を求める。 確率分布は実際に観測されているので|ψ|^2=1となる。 ここから A^2+B^2+2ABcos(2kx1)=1 が求められる。 次にt=t2,x=x2についても同様に、|ψ|^2を求めると、 |ψ|^2=A^2+B^2+2ABcos(2kx2)となり、 t=ta,x=x1のときの結果を利用して、 |ψ|^2=1-2AB{cos(2kx2)-cos(2kx1)} となり、定数A,Bが残ったままですが一応確率分布の式を求めました。 この考え方、解き方でいいのでしょうか? 教えてください。

  • ∇×?の演算方法について

    式の変形で、 μ∇×((∇^2)ψ←ベクトル)-ρ(∂^2/∂t^2)(∇×ψ←ベクトル)) =∇×((μ∇^2)ψ-ρ(∂^2/∂t^2)ψ) という変形はできますか? ちなみに出された課題は、 「ナビエの方程式に、ヘルムホルツの定理を代入して、2つの波動方程式を求めなさい」 です。 ここでナビエの方程式は→ρ(∂^2/∂t^2)u←ベクトル=(λ+2μ)∇(∇・u←ベクトル)-μ∇×(∇×u←ベクトル) ヘルムホルツの定理は→u←ベクトル=∇φ+∇×ψ←ベクトル(ただし∇・ψ=0) 2つの波動方程式は→(∂^2/∂t^2)φ=(α^2)(∇^2)φ,(∂^2/∂t^2)φi=(β^2)(∇^2)ψi (α=√((λ+2μ)/ρ),β=√(μ/ρ)) です。 私が解いた解き方は、ナビエの方程式に、ヘルムホルツの定理を代入して、先生から教わった、∇・∇×ψ=0,∇×∇φ=0,∇・∇φ=(∇^2)φを使って、左辺にφをまとめ、右辺にψをまとめ、左辺=0で解き、αの方の波動方程式は出ました。で、右辺=0にしたいのですが、冒頭のような変形をすれば、右辺=0で出そうなんですが、本当にそのような変形をしていいのかという事が知りたいです。どうかよろしくお願いします。

  • 波動方程式の差分法による境界条件

    波動方程式(ρ*∂^2u/∂t^2=T*∂u^2/∂x^2)を差分法で、境界条件をx=0とx=Lで自由条件(T*∂u/∂x=0)とした場合を考えています。 上の波動方程式を差分化すると、 (u[n+1][j]-2*u[n][j]+u[n-1][j])/(dt^2)=(u[n][j+1]-2*u[n][j]+u[n][j-1])/(dx^2) の形になると思います。(T/ρ=1.0とし、nは時間、jは距離の格子点として考えています) 初期条件は適当な形状を与えます。 両端を固定条件(u[n][0]=0,u[n][xp]=0,)とした場合はうまく解を得ることが出来ました。(xpはx=Lでの格子点) 問題は自由条件(T*∂u/∂x=0)すなわち、 T*(u[n][1]-u[n][0])/dx=0、T*(u[n][xp+1]-u[n][xp])/dx=0 となる場合、これをどのように使用したらよいのでしょうか? または根本的に考え方が間違っているのでしょうか? 本当に困ってます。よろしくお願いいたします。 内容が不十分の場合は補足要求お願いします。

  • 箱型ポテンシャルの1粒子束縛問題

     一応手元にある量子力学の教科書二冊を調べながら解こうとしてもよくわからなかったのでヒントでもいいので教えてほしいです。 問題 次のような壁を持つ箱型ポテンシャルの1粒子束縛問題を考えよ。 V(x)=∞ (x<0), V(x)=0 (0<x<a), V(x)=Vo (a,x) と言う条件です。(見にくくて申し訳ありません。)  私はまずシュレーディンガー波動方程式(時間に依らない)を書いて、その後、波動関数の一般解を書きました。 そして境界条件でその一般解を解こうとしました。が形が左右対称ではないからかうまく解けない状態です。