• ベストアンサー
  • 困ってます

電磁気学で静電ポテンシャルに関する問題です

問題文: 半径aの無限に長い円柱の中に、電荷密度が  ρ(r) = 3Q(a-r) / πa^3 の電荷が分布している。この円柱の内外の静電ポテンシャルを求めよ。(rは円柱の中心からの距離である) ---------------- 円柱内外での、単位長さあたりの電荷量と、それによって求められる静電場が r<aのとき… 電荷量:∫[0→r] ρ(r)・2πr dr = Qr^2(3a-2r)/a^3 静電場:Ein(r)=Qr(3a-2r) / 2πε0a^3 r>aのとき… 電荷量:∫[0→a] ρ(r)・2πr dr = Q 静電場:Eout(r)=Q / 2πε0r になることは分かります。 ここで静電ポテンシャルΦin(r)とΦout(r)を求めたいのですが… Φ=-∫[A→B]E(ベクトル)・ds(ベクトル) にどう当てはめていいのか分かりません。 E(ベクトル)・ds(ベクトル)を静電場E(r)と置き換えてrで積分すればいいのだと思うのですが ・積分区間をどうしたらいいのか分からない ・仮に[∞→r]で積分すると、答えが∞になる ので困っています。 そもそも考え方が違う とかだと元も子もないのですが、どなたか教えてください。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数2691
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

無限長というのが悪さしているんですね。 電位(静電ポテンシャル)の基準は任意でよいのですから,たとえば,φ(a)=0にとったらいかがでしょうか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 結局、基準をRとおいて[R→r]で積分しました。 「基準は任意」というのがすっきり理解できなかったんだと思います。

関連するQ&A

  • 電磁気学

    半径aの球内に電荷Qが一様に分布しているときの静電ポテンシャルを求めよ。 球内の電場は0だと思ったのですがこたえはE=Qr/4πε0a^3とかいてあったのですがなぜですか? 僕はどんな間違いをしてしまったのですか?

  • 静電ポテンシャルについて・・・

    静電ポテンシャルφ(P)=ー∫E・dsただし範囲はP_0~Pなんですが、ここでベクトルEとdsの内積にインテグラルの意味がわかりません。また、電荷が2個以上のときはφ(x,y,z)=(1/4πε)*Σq_j/R_jなんですがなんで電荷が2個以上の時にはインテグラルがつかないんですか?しょうもないバカみたいなもんだいだったらすいません。電磁気がまったくわからないですので勘弁してください。お願いします。

  • 静電ポテンシャルに関する問題

    電場E(r)=K{(2xy+z^2)i+x^2j+2xzk}と与えられている時、静電ポテンシャルを求めたいのですが、どのようにして積分を計算すればよいのかがわかりません。 どのように計算すればよいのでしょうか?

  • 電磁気学の問題どなたか教えて下さい(TT)

    電磁気学の問題どなたか教えて下さい(TT) 以下のレポート問題が出ました,全く分かりません(泣 どなたか解いていただけないでしょうか?>< 問2に関しては教科書のページをアップ出来ないので、分かる範囲内だけで構いません。 宜しくお願いしますm(_ _)m <問1> 図1のような半径aの導体球があり,これを内半径b,外半径cの導半球殻が取り囲んでいる. 導体球と導体球殻の中心は一致している。半径aの導体球に電荷QAを与え,これを取り囲んでいる導体球殻に電荷QBを与える. 球と球殻の中心からの距離をrとするとrの範囲は,(1)c<r (2)b<r<c (3)a<r<b (4)r<aに分類できる. (1)(1)~(4)の各部の静電場E1~E4と静電ポテンシャルφ1~φ4を求めよ。解答に際してはこれらの導出過程を記述すること。なお、静電ポテンシャルについては無限遠における静電ポテンシャルの値をゼロにとる。 (2)QA=+Q、QB=-Qとして、同心球形コンデンの静電容量Cを求めよ。 (ヒント:電位差はφ3(a)-φ3(b)で与えられる) <問2> 電気双極子モーメントが作る電場の計算で、教科書p39~p41では静電ポテンシャルを求め、これをr>>sとしてr1とr2についてテーラー展開を行い、その後に電場を計算している。これは唯一の計算方法ではない。では、以下の静電ポテンシャルから静電場を計算し、それからs/rを微小量として展開を行うことによって電気双極子モーメントが作る電場について教科書と同じ結果が得られることを示せ。なお、記号は教科書のp39~p41の記述をそのまま使っており、ここでは記号の定義の記述を省略する。 φ=(q/4πε0)×{(1/r1)-(1/r2)} (ε:イプシロンと打てば出ます) Er=-∂φ/∂rおよびEθ=(-1/r)×(∂φ/∂θ)

  • 電磁気学の問題です。

    編入試験の過去問のため、解答がありません。 1. 半径aの球があり、その内部は電荷密度ρで一様に帯電している。   球の中心からの距離がrの位置での静電ポテンシャルをr<aとr>aの場合について、それぞれ求  めよ。ただし、無限遠点での静電ポテンシャルを0とする。      よくみかける問題のようで少し違います。r<aとr>aの場合とあるため、積分区間がわかりませ   ん。よくみかける問題はr≦aで、内部の電場をr→aで+外部の電場をa→無限で積分しますよ    ね?というわけで、区間が分からないです。 2. 半径aの薄い円筒状の導体が接地しておかれている。いま、円筒の中心軸上に細い導線を張り、  線密度ρの静電荷を与えた。円筒および導線は無限に長いものとする。   1)導線が円筒内につくる電場の向きを答えよ。また、その大きさを中心軸からの距離rの関数とし   て求めよ。   2)円筒上には面密度σの負電荷が一様に誘導される。σを求めよ。   3)円筒内を電位φを求めよ。   上記の問題は接地という言葉があり、調べてもよくわかりませんでしたので、よければ、接地に対  しての考え方も教えてください。2)はシンプルでもかまいません。1)、2)はなるべく細かく教えてくだ   さい。 ※ 1.2.両方とも電位はただ載せるだけではなく求め方(積分区間等)も教えてください。 以上です。独学ですので、易しい回答をお願いします

  • 電磁気学の問題です。

    半径aの無限に長い円柱の中に、電荷密度がρ=3Q(a-r)/πa^3の電荷が分布している。この円柱内外の静電場を求めよ。なお、Qは円柱の単位長さ当たりの電荷量、rは円柱の中心軸からの距離である。

  • 電磁気学の問題で質問です。

    編入試験の過去問のため、解答がありません。 1. 半径aの球があり、その内部は電荷密度ρで一様に帯電している。   球の中心からの距離がrの位置での静電ポテンシャルをr<aとr>aの場合について、それぞれ求  めよ。ただし、無限遠点での静電ポテンシャルを0とする。      よくみかける問題のようで少し違います。r<aとr>aの場合とあるため、積分区間がわかりませ   ん。よくみかける問題はr≦aで、内部の電場をr→aで+外部の電場をa→無限で積分しますよ    ね?というわけで、区間が分からないです。 2. 半径aの薄い円筒状の導体が接地しておかれている。いま、円筒の中心軸上に細い導線を張り、  線密度ρの静電荷を与えた。円筒および導線は無限に長いものとする。   1)導線が円筒内につくる電場の向きを答えよ。また、その大きさを中心軸からの距離rの関数とし   て求めよ。   2)円筒上には面密度σの負電荷が一様に誘導される。σを求めよ。   3)円筒内を電位φを求めよ。   上記の問題は接地という言葉があり、調べてもよくわかりませんでしたので、よければ、接地に対  しての考え方も教えてください。2)はシンプルでもかまいません。1)、2)はなるべく細かく教えてくだ   さい。 以上です。独学ですので、易しい回答をお願いします。

  • 静電ポテンシャルについての質問です

    半径aの無限に長い円柱側面上に電荷が面密度ρで一様に分布しているとき、静電ポテンシャルφ(r)を求めよ  この問題が分かりません…

  • この電磁気学の問題を解いてください。

    半径aの無限に長い円柱が電荷密度pで一様に帯電しているときの電場を求める。円柱の中心軸をz軸にとる。z軸から距離rだけ離れた点P(x,y,0)の電場を考える点Pが円柱の内部にある時、点Pにおける電場の大きさを求めよ。また、電場ベクトル→E(x,y,z)=(Ex,Ey,Ez)を記せ。 よろしくお願いします。

  • 電磁気学について

    大学で電磁気学を学んでいるのですが、分からない問題がありヒントを頂きたく質問させていただきます。 問題は 互いの中心が一致した2つの球面を考える。これらの半径をそれぞれR1,R2(R1<R2)とする。内球面上に電荷q1、外球面上に電荷q2をそれぞれ与えるとき、球の中心からの距離rの点における電場E(r)を求めよ。 また、電位の基準を無限遠としたときr=R1、r=R2における電位を求めよ。 というものです。 問題文中のEはベクトルではないため、習った公式であるE(r)=q1(r-r1)/4πε|r-r1|^3 (r,r1は電荷の位置ベクトルであり、Eはrの位置におけるq1による電場のベクトル)は使えません。 勾配を使えばいいのかと思ったのですが、どのように扱えばいいのか分からず……。 ご回答いただければ助かります。よろしくお願いします。