• ベストアンサー
  • すぐに回答を!

電磁気学の問題どなたか教えて下さい(TT)

電磁気学の問題どなたか教えて下さい(TT) 以下のレポート問題が出ました,全く分かりません(泣 どなたか解いていただけないでしょうか?>< 問2に関しては教科書のページをアップ出来ないので、分かる範囲内だけで構いません。 宜しくお願いしますm(_ _)m <問1> 図1のような半径aの導体球があり,これを内半径b,外半径cの導半球殻が取り囲んでいる. 導体球と導体球殻の中心は一致している。半径aの導体球に電荷QAを与え,これを取り囲んでいる導体球殻に電荷QBを与える. 球と球殻の中心からの距離をrとするとrの範囲は,(1)c<r (2)b<r<c (3)a<r<b (4)r<aに分類できる. (1)(1)~(4)の各部の静電場E1~E4と静電ポテンシャルφ1~φ4を求めよ。解答に際してはこれらの導出過程を記述すること。なお、静電ポテンシャルについては無限遠における静電ポテンシャルの値をゼロにとる。 (2)QA=+Q、QB=-Qとして、同心球形コンデンの静電容量Cを求めよ。 (ヒント:電位差はφ3(a)-φ3(b)で与えられる) <問2> 電気双極子モーメントが作る電場の計算で、教科書p39~p41では静電ポテンシャルを求め、これをr>>sとしてr1とr2についてテーラー展開を行い、その後に電場を計算している。これは唯一の計算方法ではない。では、以下の静電ポテンシャルから静電場を計算し、それからs/rを微小量として展開を行うことによって電気双極子モーメントが作る電場について教科書と同じ結果が得られることを示せ。なお、記号は教科書のp39~p41の記述をそのまま使っており、ここでは記号の定義の記述を省略する。 φ=(q/4πε0)×{(1/r1)-(1/r2)} (ε:イプシロンと打てば出ます) Er=-∂φ/∂rおよびEθ=(-1/r)×(∂φ/∂θ)

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数1276
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • Quarks
  • ベストアンサー率78% (248/317)

問1 (1)以下では、表記を簡単にするため、クーロンの法則の定数 k=1/(4πε)とします。 電荷の分布状況ですが、QAは内球の表面だけに分布しており、内球の内部には電荷がありません。 外殻の内面には-QAが、外面には(QB+QA)の電荷が分布しています。内部に電荷はありません。 ガウスの法則を利用します。 (1)c<rの場合 内球の中心Oに、電荷QA+QBが集中して存在していると考えて良いので E(r)=K(QA+QB)/(r^2) φ(r)=K(QA+QB)/r (2)b<r<cの場合、導体内なので、電場は0 E(r)=0 導体内なので、電位は一定、かつ r=cの位置で、(1)のφ(r=c)と一致しているはずだから φ(r)=K・(QA+QB)/c=一定 (3)a<r<bの場合、ガウスの法則から E(r)=K・QA/(r^2) φ(r)=K・QA/r+φ' r=bで電位が、(2)でのφ(r)と一致するので K・(QA+QB)/c=K・QA/b+φ' 変形して φ'=K{(QA+QB)/c-QA/b} ∴φ(r)=K・QA/r+K{(QA+QB)/c-QA/b} (4)導体内なので電場=0 E(r)=0 電位は一定かつr=aで(3)のφ(r)と連続だから φ(r)=K・{QA/a+(QA+QB)/c-QA/b)} (2)内球の電位φ(a)=K・{Q/a+(Q-Q)/c-Q/b)} =K・Q{(1/a)-(1/b)} 外殻の電位φ(b)=K(Q-Q)/c=0 ∴内外導体間の電位差は K・Q{(1/a)-(1/b)} で、Qを帯電しているので Q=C・K・Q{(1/a)-(1/b)} ∴C=(1/K)・{ab/(b-a)}

共感・感謝の気持ちを伝えよう!

質問者からのお礼

即答出来ず申し訳ございませんでした><。 しかしおかげさまでレポートの提出期限に無事間に合うことが出来ました。 本当にありがとうございました、以後ちゃんとやりなおして自分で解いていきますm(_ _)m

関連するQ&A

  • 電磁気学の問題です。

    中心を共通する半径a、半径bの球殻A、球殻Bがある(b>a)。AとBとの間には誘電率εの誘電体を挿入し、ほかは真空である。次の問に答えよ。ただし、誘電体は等方的で線形な物質であるとする。 (I)球の中心に点電荷qを置き、A、BにそれぞれQA、QBの電荷が一様に帯電しているとし、球殻の中心からの距離をrとして、電束密度D(r)、電場E(r)を求めよ。 (II)A、Bの電位VA、VBを無限遠方を基準として計算せよ。 (III)AB間の静電容量を求めよ。 このような問題です。 (I)はそれぞれの電場(q、A、B)を求めて足し合わせようと考えているのですが、電場の求め方が分かりません。 (II)は、E=-gradVから求めようと思っていますが、Eがわからないことにはどうしようもできません。 (III)はQ=CVに代入するんでしょうか? 以上です。よろしくお願いします。

  • 大学の電磁気学についての問題です!!

    大学の電磁気学についての問題です!! 半径a<bの同心導体球殻A,Bがあります。 Aに電荷+q、Bに電荷-qを与えました。 (1)A,B間の任意の点r(ベクトル)(a<r<b)における電場E(r)を求めなさい。 (2)同心球をコンデンサーとみるときの電気容量Cを求めなさい。 どうかおねがいします!!!!!同心導体球殻の特徴もできれば教えてください!

  • 電磁気学が難しく授業についていけていません(~_~

    以下の問題が分かりません… 1.真空中に半径aの導体球があり、+Qに帯電されている。この導体球を囲うように、半径b(b>a)の薄い球殻が置かれている。球殻には均一に合計-Qの電荷を帯電させた。導体球と球殻の中心は一致している。以下の問いに答えよ。 1)球殻の中心を原点とするとき、げんてんからの位置ベクトルrの点での電界を求めよ。 2)空間に蓄えられる静電エネルギーUをもとめよ。 2.断面の半径がaで長さが無限大の円柱上の物体の内部を一様に電流Iが流れている。またこの円柱状物体と中心軸が一致した長さが無限大で半径がb(b>a)の薄い円菅に一様に電流Iが円柱状物体の電流と同じ向きに流れている。このときの磁界の大きさをアンペールの法則(積分形)を適用して求めよ。 長くなってしまい、すみませんm(_ _)m 1)はなんとかできたとはおもいますが、球殻と導体球が実際どのような電界が出ているのかがイメージできません(~_~;)

  • 電磁気学の問題です

    内球の半径がa、外球殻の内外半径がそれぞれb、cである同心球導体が真空中に置かれている。 それぞれに+Qおよび-Qの電荷を帯電させたときの静電エネルギーWを求めよ。 解答:W=Q^2/8πε (1/a-1/b) さっぱり分からないので解答までの導出を詳しく教えてください。

  • 電磁気学の問題です。

    編入試験の過去問のため、解答がありません。 1. 半径aの球があり、その内部は電荷密度ρで一様に帯電している。   球の中心からの距離がrの位置での静電ポテンシャルをr<aとr>aの場合について、それぞれ求  めよ。ただし、無限遠点での静電ポテンシャルを0とする。      よくみかける問題のようで少し違います。r<aとr>aの場合とあるため、積分区間がわかりませ   ん。よくみかける問題はr≦aで、内部の電場をr→aで+外部の電場をa→無限で積分しますよ    ね?というわけで、区間が分からないです。 2. 半径aの薄い円筒状の導体が接地しておかれている。いま、円筒の中心軸上に細い導線を張り、  線密度ρの静電荷を与えた。円筒および導線は無限に長いものとする。   1)導線が円筒内につくる電場の向きを答えよ。また、その大きさを中心軸からの距離rの関数とし   て求めよ。   2)円筒上には面密度σの負電荷が一様に誘導される。σを求めよ。   3)円筒内を電位φを求めよ。   上記の問題は接地という言葉があり、調べてもよくわかりませんでしたので、よければ、接地に対  しての考え方も教えてください。2)はシンプルでもかまいません。1)、2)はなるべく細かく教えてくだ   さい。 ※ 1.2.両方とも電位はただ載せるだけではなく求め方(積分区間等)も教えてください。 以上です。独学ですので、易しい回答をお願いします

  • 電磁気の問題について

    電磁気の問題について質問させていただきます。 真空中に電荷Qっを帯電させた半径aの導体球がある。誘電率をε0としたとき以下の問いに答えよ。 (1) 導体休の中心から距離をrとしたとき、この導体球内の電場の大きさEin(r)と導体休外側の電場の 大きさEout(r)をそれぞれ求めよ。 (2) この導体球の電位φを求めよ。ただし、導体球表面の電位を基準とする。 (3) 電荷qの・電荷が導体休の外側にあるとき、この点電荷に働くクーロン力vec(F)を成分で表せ。ただし、点電荷の位置ベクトルをvec(x) = (x,y,z)tとする。 ※vec()はベクトル、()tは転置を表します。 (1)の答えは導体球なので Ein(r) = 0 、 Eout(r) = Q/(4*π*ε0*r^2) (3)の答えは vec(F) = q*Q/(4*π*ε0*(x^2+y^2+z^2)^(3/2))*(x,y,z)t で合っていますでしょうか? (2)については、「表面を電位の基準とする」というのは表面を接地するということなのでしょうか? また、導体球の電位とは何を意味しているのでしょうか? 教科書では、無限遠点を電位の基準として、そこから単位電荷ある点まで移動させたときにした仕事が電位(静電ポテンシャル)であると習ったので、導体の電位というのが何をさせているのかわからなくなってしまいました。 回答よろしくお願いいたします。

  • 電磁気学の問題で質問です。

    編入試験の過去問のため、解答がありません。 1. 半径aの球があり、その内部は電荷密度ρで一様に帯電している。   球の中心からの距離がrの位置での静電ポテンシャルをr<aとr>aの場合について、それぞれ求  めよ。ただし、無限遠点での静電ポテンシャルを0とする。      よくみかける問題のようで少し違います。r<aとr>aの場合とあるため、積分区間がわかりませ   ん。よくみかける問題はr≦aで、内部の電場をr→aで+外部の電場をa→無限で積分しますよ    ね?というわけで、区間が分からないです。 2. 半径aの薄い円筒状の導体が接地しておかれている。いま、円筒の中心軸上に細い導線を張り、  線密度ρの静電荷を与えた。円筒および導線は無限に長いものとする。   1)導線が円筒内につくる電場の向きを答えよ。また、その大きさを中心軸からの距離rの関数とし   て求めよ。   2)円筒上には面密度σの負電荷が一様に誘導される。σを求めよ。   3)円筒内を電位φを求めよ。   上記の問題は接地という言葉があり、調べてもよくわかりませんでしたので、よければ、接地に対  しての考え方も教えてください。2)はシンプルでもかまいません。1)、2)はなるべく細かく教えてくだ   さい。 以上です。独学ですので、易しい回答をお願いします。

  • 電磁気学の問題

     一様な電場E₀(ベクトル)の中に、帯電していない半径Rの導体球を置いた。 この時、球の回りに生じる電場は、球の中心に置いた電気双極子モーメントp(ベクトル)=4πε₀R³E₀が発生する電場と電場E₀を重ね合わせた電場と同じになることを証明せよ。   E₀は球の回りを、同じ方向を向いています。下の図   → → → → →   → → 球 → → → → → → →  このような問題なのですが、全くわかりません。 方針だけでもいいので教えてください。  お願いします。

  • 電磁気学に関する問題です

    半径r_1(rに下付きで1、以後下付きの文字や数字の前には_をつける)[m]、誘電率ε_1[F/m]の誘電体球と、内半径r_2[m]、外半径r_3[m]の中空導体球が、ともに座標原点を中心として置かれている。誘電体球は電化密度ρ[C/m^3]で一様に帯電しており、中空導体球は帯電していないものとする。自由空間の誘電率をε_0[F/m]として、以下の問いに答えよ。 (図が書けないので補足しておきます。r_1<r_2<r_3となっており、中空導体球の中に誘電体球があるようなイメージです。) 1.中空導体球の内側及び外側表面には電荷が発生する。それぞれの面電荷密度σ_i[C/m^2]およびσ_o[C/m^2]を求めよ。 2.原点からr[m]の点における外向き電界強度E(r)[V/m]を、0<r<r_1、r_1<r<r_2、r_2<r<r_3、r_3<rのそれぞれの場合について数式で表せ。 3.次に中空導体球を抵抗R[Ω]を介して接地した。このとき、接地した瞬間から測った時刻t[s]に対して、抵抗を流れる電流i(t)[A]が i(t)=i(0)exp(-αt) (t≧0) となることを導け。ただしαはある定数であり、大地の電位は常に0[V]である。 導体球と誘電体球を、どのように同時に考えたらいいのか分からず、 困っています。 中空導体球の中に導体球がある場合などについては、参考書で見かけたのですが…。 かなり図書館で色々な本を見てみたのですが、だいたいどの本も 誘電体と導体の話が別々に書いてあります。 中空導体球の中に誘電体球、このような場合どのように考えたらいいのでしょうか。 中空導体球と、誘電体球の相互関係はないのでしょうか。 ないのなら、中空導体球の問題1.は中空導体球だけで考え、2.は・・・ r_1<r<r_2のときは・・・ 混乱してきました。 どなたか、ヒントまたは助力、お願いします。。。

  • 電磁気学

    半径aの球内に電荷Qが一様に分布しているときの静電ポテンシャルを求めよ。 球内の電場は0だと思ったのですがこたえはE=Qr/4πε0a^3とかいてあったのですがなぜですか? 僕はどんな間違いをしてしまったのですか?