締切済み ∑_(k=1)^n 4/log_2 (a_k+1) log_2 (a 2010/11/01 20:35 ∑_(k=1)^n 4/log_2 (a_k+1) log_2 (a_(k+1)+1) どうやって計算をしていけばいいのでしょうか? 高校の数列の問題です。 みんなの回答 (2) 専門家の回答 みんなの回答 reinoare ベストアンサー率24% (7/29) 2010/11/01 20:51 回答No.2 ん~式あってますかね; 手書きでいいのでもう一度書いてみてください 通報する ありがとう 0 広告を見て他の回答を表示する(1) spring135 ベストアンサー率44% (1487/3332) 2010/11/01 20:50 回答No.1 式が意味をなしてません。 正確に書いてください。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A k=[[log10(n)]]+1 k=[[log10(n)]]+1 対数関数の式なのですが、 この式が社会で使われているそうなんです。 (コンピュータープログラム、物理学など) どのように使われているか、知っている方教えてください。 収束S_(n+1)=S_n+log(a-S_n) S_1=log a として S_(n+1)=S_n+log(a-S_n) とすると {S_n}が収束することを示せという問題なのですが、 とき方としては、 まず問題文よりa>0またすべてのnにおいてa-(S_n)>0 これを変形してa>S_n よって、S_nは上に有界である。…(1) ここでf(x)=x-logxを考える(0<x) f '(x)=1-1/xであるためf(x)の最小値はf(1)=1であることがわかる。…(2) 任意のnに対し S_(n+1) =S_n+log(a-S_n) =S_n+log(a-S_(n-1)-log(a-S_(n-1)) Y=a-S_(n-1) とおいて代入すると =S_n+log(Y-logY) 2の結果より 1)Y≠1 log(Y-logY)>0になるので、すべてのnにおいてS(n+1)>S(n)となり、(1)とあわせ、数列は収束する 2)Y=1 log(Y-logY)=0になり、S_(n+1)=S_nとなる。この場合はすべての項が同じになる。 よって数列{S_n}は収束する 収束値LはL=L+log(a-L)⇔log(a-L)=1⇔L=a-1である。 で回答の方針はあってますか?何か間違いがあったら指摘お願いします。まったく見当違いな解答でしたら、正しいやり方のヒントお願いします。 対数を含む数列 a[n]=log[10]{(n+2)/n}を満たす数列{a[n]}がある。 Sn=Σ[k=1,n]{a[k]}とおく。 (1)Sn=log[10](ア/イn^2+ウ/エn+オ) であり、Snが初めて2を超えるときのnの値は n=カキである。 (2)b[n]=10^(Sn)とおく。 b[1]=ク,b[2]=ケであり、 Σ[k=1,10]{1/b[n]}=コ/サ である。 という問題です。 (1)log[10]{(k+2)/k}=log[10](k+2)-log[10]kとしても log[10]{(k+2)/k}=log[10]{1+(2/k)}としても Σの計算で行き詰まってしまいます。 よろしくお願いします。 a_1 = 1 , a_(n+1)=√(1+a_n) (n=1,2, a_1 = 1 , a_(n+1)=√(1+a_n) (n=1,2,3・・)に対して、次の問題に答えよ。 (1) a^2_(n+1) - a^2_n = a_n - a_(n-1) が成り立つことを示し、数列{a_n}が単調数列であることを示せ (2) a_n<2 となることを示せ (3) lim a_n (n→∞)を求めよ 以前に質問して答えていただいたのですが、(3)が、理解できませんでした。(3)から、途中式も詳しく教えてください。よろしくお願いします。 O(n log n)について2 n log nはつまり10の(nのn乗)乗という事ですね? なにやらこちらの参考文献にはNの2乗よりn log nの方が効率が良いとあるのですが計算するとn log nのほうが数値が高くなるのですが、これはどういうことでしょう? 数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている 数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている。 (1) b_n=log_2×a_nと置く時、b_n+1=[あ]/[い](b_n-[う])となり b_n=2^[え]-n ー[お] となる。 あいうえおを求めよ。 数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている。 (1) b_n=log_2×a_nと置く時、b_n+1=[あ]/[い](b_n-[う])となり b_n=2^[え]-n ー[お] となる。 あいうえおを求めよ。 (2) P_n=1/a_1×a_2×a_3・・・×a_nと置く時 log_2×P_100=[か]+2^[き] となるのでP_100は[く]となる かきくを求めよ チャート式で調べてもわかりません><解法と解答を教えてください 数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている。 数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている。 (1) b_n=log_2×a_nと置く時、b_n+1=[あ]/[い](b_n-[う])となり b_n=2^[え]-n ー[お] となる。 あいうえおを求めよ。 数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている。 (1) b_n=log_2×a_nと置く時、b_n+1=[あ]/[い](b_n-[う])となり b_n=2^[え]-n ー[お] となる。 あいうえおを求めよ。 (2) P_n=1/a_1×a_2×a_3・・・×a_nと置く時 log_2×P_100=[か]+2^[き] となるのでP_100は[く]となる かきくを求めよ チャート式で調べてもわかりません><解法と解答を教えてください log(a^2+x^2)の収束半径の求め方 log(a^2+x^2)をマクローリン展開して一般項を求め、収束半径を計算する問題です。 一般項は log(a^2)+Σ(n=1~∞) (-1)^(n-1)(x/a)^(2n)/n となると思うのですが、このあとに収束半径を求める方法がわかりません。 解く過程を教えていただきたいです。 お願いします。 どなたか下付き文字のnやkを持ってる方いませんか? どなたか下付き文字のnやkを持ってる方いませんか? a₁ a₂ a₃ のような小さな文字です。 数列などのとき大変有用かと思うのですが、一般にはないようなので困っています。 数列a[n+1]=a[n]/(1+a[n])^2,a[1]=1/2 数列a[n+1]=a[n]/(1+a[n])^2,a[1]=1/2 のとき、 lim[n->∞](a[1]+・・・・+a[n])/n の値を求めよ。 (小問で、1/a[n]>2nは解決済み。) はさみうちをするのだとは思うのであるが、その前のひと工夫がわからない。 よろしくお願いします。 問題間違いΣ[k=1->n]1/tan^2(k/(2n+1))Π 問題間違いΣ[k=1->n]1/tan^2(k/(2n+1))Π の値を求めよ。(2乗を忘れました。すみません) たぶん、Σ[k=1->n]{a(n)-a(n+1)} の形に分解すればよいのだろうということで、変形を 考えましたが、うまく変形できません。 よろくお願いします。 フィボナッチ数列のn番目の項をa[n]とすると フィボナッチ数列のn番目の項をa[n]とすると a[n]≦2^nとなることを証明せよという問題がわかりません・・・。 どなたか解説お願いします。 数列{a_n}の和の求め方 数列{a_n}の第n項目が a_n=2/{(n+2)(n+3)(n+4)} で表されるときのa_1~a_nまでの和S_nを求めよ、という問題なのですがΣも使えず分数の和に分解してもうまくいきません。 誰か解き方を教えてください! (等差数列×等比数列)の和の求め方 数列{a_n}は初項1、公差2の等差数列、数列{b_n}は初項1、公比3の等比数列とする。このとき、Σ[k=1→n]{a_k}{b_k}を求めよ。という問題です。 解説では、{a_n}=2n-1、{b_n}=3^(n-1)で、S=Σ[k=1→n]{a_k}{b_k}とおき、Sと3Sを計算すると -2S= 1 + 2*3 + 2*3^2 +..........+ 2*3^(n-1) - (2n-1)*3^n =1 + { 2 * 3[3^(n-1)] / (3-1) } - (2n-1) * 3^n とありますが、1 + { 2 * 3[3^(n-1)] / (3-1) } - (2n-1) * 3^nは一体何を公式に当てはめて出したのでしょうか? 正の実数の列{a(n)}においてΣa(n)∈R⇒Σa(n)/n∈R? 正の実数からなら数列{a(n)}に於いて、 「Σa(n)が収束する⇒Σa(n)/nは収束する」 という命題は正しいかどうか考えてます。 一見,正しいようですがどうやって証明が言えるのでしょうか? 漸化式からの数列{a(n)} 漸化式a(1)=0,a(n+1)=2a(n)+1 (N=1,2,3........)によって数列{a(n)}を定めるときa(4)を求めよ。 この問題の解き方がいまだに理解できません。 ご協力よろしくお願いします。 log2nと(log n)2の違いは何ですか? log2nと(log n)2の違いは何ですか? 前者の2は低ではなく、上付き文字です。 よろしくお願いします。 a^(b^(c^(・・・))) 正数列(a_n)が与えられていて1に収束するとします。 各nについて c(n,n)=a_n c(n,k)=(a_k)^c(n,k+1)(1≦k≦n-1) によって定まるc(n,1),・・・,c(n,n)を用い、 b_n=c(n,1)によって数列(b_n)を定めるとします。 (b_n)が収束しない(a_n)の例はありますか? Z会の問題、Σ[k=1,n]k*(-1)^(k-1)=(1/4){1-(2n+1)(-1)^n} Z会の問題で Σ[k=1,n]k*(-1)^(k-1)=(1/4){1-(2n+1)(-1)^n} というのがありました。 数学的帰納法を用いれば証明できますが、右辺の答えを知らない段階で、右辺を導く方法があれば教えてください。 Σ[k=1,n]k^2*(-1)^(k-1) や Σ[k=1,n]k^3*(-1)^(k-1) や Σ[k=1,n]k^p*(-1)^(k-1) などの公式をご存知の方は教えてください。 Σ[k=1..∞](-1)^(k+1)/k^2=π^2/12において,|π^2/12-s(n)|<10^-4となる為のnの大きさは? 皆様、宜しくお願い致します。下記の問題でたいそう難儀しております。 [問]与えられたΣ[k=1..∞](-1)^(k+1)/k^2=π^2/12において,|π^2/12-s(n)|<10^-4 となる為にはどのくらい大きい自然数nが選ばれねばならないか決定せよ。 但し,s(n)はこの級数のn項迄の部分和を表す。 という問題なのですがこれはどのようにして解けばいいのでしょうか?