• ベストアンサー
  • すぐに回答を!

sinθ=√1-cosθ^2という公式について質問です。

sinθ=√1-cosθ^2という公式について質問です。 この公式は、どの三角関数の公式から計算されたものなのでしょうか? sin^2x=(1-cos(2x))/2から計算されていると思ったのですが(あっているかはわかりません)どう変形していいのかわからず困っています。それとも、こういう公式があると思ってしまった方がいいのでしょうか? 基礎の質問とは思いますがご回答の方よろしくお願いいたします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1197
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

元の式は、 sinθ^2+cosθ^2=1 でしょ? よく見る式です。移項して平方根を求めているだけ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答の方ありがとうございます。元の式がまちがっているだけでした。ご指摘のほうありがとうございます。

関連するQ&A

  • ∫(0→2π)(sin^2θcosθ)dθの計算

    ∫(0→2π)(sin^2θcosθ)dθの計算 ここからどのようにすれば[sin^3θ/3](0→2π)と変形できるのでしょうか。回答には途中式がなく、なぜこのようになるのかが分かりません。どなたか回答お願いします。

  • cos(x/2)*cos(x/2^2)*・・・・・cos(x/2^n)

    実数x及び自然数nに対して a_n=cos(x/2)*cos(x/2^2)*・・・・・cos(x/2^n) とする。 (1)2^n*a_n*sin(x/2^n)の値はnと無関係に一定であることを証明せよ。 (2)log|a_n|をxで微分することにより、 Σ(n=2~∞)1/2^n *tan(π/2^n)=1/π であることを証明せよ この問題に取り組んでいます。 (1)で2^n*a_n*sin(x/2^n)の計算を行っていて、いろいろな三角関数の公式を利用してみたのですが全然うまくいきません。「nと無関係」ということはnが消えればいいということだと思うのですが・・・。 (2)はloga_nを微分したところ -1/2 tan(x/2) - 1/2^2 tan(x/2^2) -・・・となったのですがここから証明すべき式に変形するにはどうしたらいいのでしょうか? 回答いただければありがたいです。よろしくお願いします

  • cos(θ-90°)sin(θ+180°)・・・・

    □の部分を求めよ。 (2)次の式を簡単にせよ。 cos(θ-90°)sin(θ+180°)-cos(θ-180°)sin(θ+270°)=□ それぞれ cos(θ-90°)、sin(θ+180°)、cos(θ-180°)、sin(θ+270°)はどのように変形すれば良いのでしょうか? 回答よろしくお願いします!

  • ∫cos^2xsin^3xdxの求め方

    ∫cos^2xsin^3xdxを求めよ。 という問題ですが、 解答には、 (与式)=∫cos^2x(1-cos^2x)sinxdx =∫ (cos^4-cos^2)(cosx)'dx =cos^5x/5-cos^3x/3+C とありました。 最後の変形がよく分からないのですが、 これは部分積分ではないのですか? 数学は苦手なので、できれば分かりやすい回答を よろしくお願いします。

  • sin、cosの質問です

    sinθ+cosθ=1/2のとき 1、sinθ cosθ 2、sin3条θ+cos3条θ 3、sin4条θ+cos4条θ 回答があり、答えは分かるのですが 久しぶりに解こうとしたら、計算方法が分かりません 計算の仕方を教えてくださいm(_ _)m

  • sin,cosの簡単な計算

    簡単な計算問題で、答えを見れば一応理解できるのですが、なぜこのような解法が閃くのかが分からないので教えてください。 (1)cos(90-θ)+cosθ+cos(90+θ)+cos(180-θ) =sinθ+cosθ-sinθ-cosθ =0 (2)sin75+sin120-cos150+cos165 =cos(90-75)+sin(180-120)-{-cos(180-150)}+{-cos(180-165)} =cos15*sin60+cos30+-cos15 =√3 (1)はcos(90-θ)=sinθをとりあえず置き換えて、これ±0になりそうだな、と思って感でやったらできましたが、(2)はさすがに感ではできませんでした。この問題のどこに着目して皆さんは変形するのでしょうか。 また、このような問題は私立・国立ともに出題されますか。

  • sin^2(90°+θ)+sin^2(180°-θ)+cos^2(90

    sin^2(90°+θ)+sin^2(180°-θ)+cos^2(90°+θ)+sin^2(90°-θ) を解いてください 計算式もお願いします

  • sinθ-sinθcosθの最大値を求めたいのですが、どうすれば求まる

    sinθ-sinθcosθの最大値を求めたいのですが、どうすれば求まるでしょうか? 合成したり、sinθcosθ=1/2*sin2θと変形して、2次関数の形に変形したりできず困っています・・・。

  • x=cosθ-sinθ y=cosθsinθの積分

    x=cosθ-sinθ y=cosθsinθ 面積の計算のしかたをおしえてください!

  • sinθ-cosθをrsin(θ+α)の形にする

    sinθ-cosθをrsin(θ+α)の形に変形する仕方について。 asinθ+bcosθ=rsin(θ+α) ただし、r=√(a^2+b^2) sinα=b/r , cosα=a/r という定義があるのは分かるのですがαの値の正負の判別のしかたがわかりません。 今回、定義に従って計算するとα=π/4となるのですが、答えには√2sin(θ-(π/4))とありました。 αの前にある符号はasinθ+bcosθはaとbの符号の組み合わせで決まるのでしょうか? 計算ミスの可能性もあります... 回答のほうよろしくお願いします。