• ベストアンサー

fを集合Xから集合Yへの全射とするとき、|X|≧|Y|を証明せよ。

boisewebの回答

  • boiseweb
  • ベストアンサー率52% (57/109)
回答No.1

(1) ご質問の問題をいったん離れて,「2つの集合 A,B について,|A|≧|B| の定義は何か?」,言い換えれば「2つの集合 A,B について,|A|≧|B| を証明しようとするとき,何を示せば『証明した』ことになるのか?」について,質問者さんが理解していることを補足にどうぞ. もし,そのことが理解できていないのなら,まず,自分の力でそれを理解すべく努力してください. (2) ご質問の問題に関連して,「選択公理」云々という注意書きはありませんでしたか? 本来,この問題を出題するにあたっては,選択公理についてどのような立場をとるのかを,何らかの形で宣言しておく必要があります.この問題に完全な形で答えるためには選択公理を使う必要があるからです.もし,選択公理について何の言及もないままこの問題を出題したとしたら,厳しい見方をすれば出題ミスと言えなくもありません(おおらかな見方をするなら「選択公理は常に仮定する」と補って解釈することになるでしょうが).

aki-mizu
質問者

お礼

ご解答有難うございます。 問題文には上記しか記載されていません。 勉強してみます。

関連するQ&A

  • f:X→Y, g:Y→Xを集合Xと集合Yの間の写像

    f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

  • 全射の証明です

    f(x)=2x x=整数 のとき、全射であること(任意の偶数yに対して整数xが存在してf(x)=yとなる)を示せという問題が分かりません。 教えてください!よろしくお願いします。

  • 商空間における全射について

    商空間の定義で出てくる、『全射』がよくわかりません。 内田伏一著、集合と位相の96ページに、定義として、 (X,O)を位相空間とし、f:X→Yを集合XからYへの全射とする。集合Yの部分集合族O(f)を O(f)={H∈B(Y)|f^(-1)(H)∈O} によって定義する。 とあるのですが、ここでf^(-1)の逆写像の存在を認めていますよね?しかし、fは全単射ではなく、全射としか仮定がついていないのに、この逆写像は存在することにしてしまっていいのでしょうか?? すごく初歩的なことかもしれませんが、アドバイスお願いします。

  • 位相空間への全射について

    位相空間への全射について 位相空間と写像について学習している者です。 質問させていただきます。 -- 集合Xから位相空間(Y,μ)への全射fがあるとき、 Т = {(1/f)(U)|U∈μ}とおくとき、ТがX上の位相であることを証明せよ。 ※(1/f)はfの逆関数を示します。 -- これを証明したいのですが、道筋が見えません。。。 ご教授よろしくお願いいたします。

  • 集合と位相の問題です。

    (問)fを集合Xから集合Yの全射とする。Xの任意の元x_1、x_2についてx_1~x_2をf(x_1)=f(x_2)とさだめるとき、 |X/~|=|Y|を証明せよ。 xがたくさんあるのに、f(x)がひとつになってしまうようなイメージにとりつかれてわからなくなってしまいました。 どなたかご教授ください。

  • 集合に関する証明です。

    集合の問題で証明の仕方が分からないので質問させてください。 X,Yは集合,fは関数で f:X→Y, I,Jは添字集合 Ai,i∈IはすべてXの部分集合 Bj,j∈JはすべてYの部分集合 (1)f[∪Ai]=∪f[Ai] (2)f^(-1)[∪Bj]=∪f^(-1)[Bj] (3)f[∩Ai]⊂∩f[Ai] (4)f^(-1)[∩Bj]=∩f^(-1)[Bj) この(1)~(4)の証明です。 宜しくお願いします。

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 写像の証明問題です。よろしくお願いします。

    写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 Yの任意の部分集合Bに対して、全射より f^(-1)(i(B))⊂i(f^(-1)(B)) になるので、fは連続写像である(手持ちのテキストにより)。よって題意がなりたつ。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。