• ベストアンサー

p>0に対してガンマ関数Γ(p)=∫(e^-x)(x^p-1)dxとお

p>0に対してガンマ関数Γ(p)=∫(e^-x)(x^p-1)dxとおく。(0→∞) (1)p>0に対してΓ(p+1)=pΓ(p)を示せ。 (2)nを自然数としてΓ(n)を求めよ。 詳しく教えてください。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

タイピング簡略のためΓ=Gとする 普通、この手の問題は、まずGが収束していることを示す必要あるのだけど・・・。 (1)部分積分するだけ。 G(p+1) =int[0,∞]exp(-x)x^pdx =[-exp(-x)x^p][0,∞]+int[0,∞]exp(-x)px^{p-1}dx =pG(p) (2) 普通に積分してG(1)=1. G(n)=(n-1)G(n-1)=(n-1)(n-2)G(n-2)=...=n!G(1)=n!.

starmagic
質問者

お礼

回答ありがとうございました。 わかりました!

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • p>0に対してガンマ関数Γ(p)=∫(e^-x)(x^p-1)dxとお

    p>0に対してガンマ関数Γ(p)=∫(e^-x)(x^p-1)dxとおく。(0→∞) (1)p>0に対してΓ(p+1)=pΓ(p)を示せ。 (2)nを自然数としてΓ(n)を求めよ。 誰か教えてください。

  • P>0に対して、ガンマ関数はΓ(p)=∫(e^-x)(x^p-1)dx

    P>0に対して、ガンマ関数はΓ(p)=∫(e^-x)(x^p-1)dx (0→∞)と定義される。 (1)p>1に対してΓ(p)=(p-1)Γ(p-1)を示せ。 (2)nを自然数としてΓ(n+1/2)を求めよ。 教えてください。

  • P>0に対して、ガンマ関数はΓ(p)=∫(e^-x)(x^p-1)dx

    P>0に対して、ガンマ関数はΓ(p)=∫(e^-x)(x^p-1)dx (0→∞)と定義される。 (1)p>1に対してΓ(p)=(p-1)Γ(p-1)を示せ。 (2)nを自然数としてΓ(n+1/2)を求めよ。 誰か詳しく教えてください。 よろしくお願いします。

  • 三角関数を使わずに∫[-1,1]1/√(1-x^2) dx=2∫[-1,1]√(1-x^2) dx

    http://ja.wikipedia.org/wiki/%E5%86%86%E5%91%A8%E7%8E%87 によると、 π:=∫[-1,1]1/√(1-x^2) dx π:=2∫[-1,1]√(1-x^2) dx π:=∫[-∞,∞]1/(1+x^2) dx ということですが、 ∫[-1,1]1/√(1-x^2) dx =2∫[-1,1]√(1-x^2) dx =∫[-∞,∞]1/(1+x^2) dx ということを三角関数を使わずに示すにはどうしたらよいのでしょうか? 三角関数を使わずに、という理由は、 arcsin(x)=∫[0,x]1/√(1-x^2) dx というのが三角関数の定義として考えたいからです。

  • ∫[1→e](x^2){(logx)^n}dxの解

    ∫[1→e](x^2){(logx)^n}dxを求めよ。ただし、eは自然対数の底、nは自然数とする。 これが解けなくてとても困っています。助けてください。 (1/3)x^3を微分するとx^2になることから、部分積分法で計算すると、 ∫[1→e](x^2){(logx)^n}dx=(1/3)e^3-(n/3)∫[1→e](x^2){(logx)^(n-1)}dx・・・・(1) になりますよね?(計算が合ってる自信はあまりないです‥)また、n=1の時を考えると、 ∫[1→e](x^2)(logx)dx=(2e^3+1)/9・・・・(2) になりました。 (1)と(2)から、n=2の場合を考えると ∫[1→e](x^2){(logx)^2}dx=(1/3)e^3-(2/3)(2e^3+1)/9=(5e^3-2)/27・・・・(3) になりました。(1)と(3)から、n=3の場合を考えると ∫[1→e](x^2){(logx)^3}dx=(1/3)e^3-(3/3)(5e^3-2)/27=(4e^3+2)/27・・・・(4) になりました。(1)と(4)から、n=4の場合を考えると・・・といったように繰り返し計算して、一般項を類推して、数学的帰納法で証明しようとしたのですが、肝心の一般項がうまく類推できません。一般項はなんだと思われますか?そもそもこの解き方で正解にたどり着けるのでしょうか? もうひとつ質問があります。 n→∞のとき、lim∫[1→e](x^2){(logx)^n}dxを求めよ。 これも解けなくて困っています。一般項がわかれば自然と解けると思うのですが、上記のところで行き詰まっているので、この極限値も得られていません。これにも答えれ頂ければとても助かります。よろしくお願いします。

  • ∫ x^2 e^(3x) dx

    ∫ x^2 e^(3x) dx = (x^2 )[1/3 e ^ (3x)] - [1/3 e ^ (3x) ](2x) ~ と続くのですがこれはこの公式を使っています→  ∫ u (dv/dx) dx = uv - ∫ v (du/dx) dx わからないのはe^(3x)が 1/3  e ^ (3x)となる事です。例えば y=3e^(x^2) dy/dx = [ 3e^(x^2)] (2x) = 6x e^(x^2) となります。 なので ∫ x^2 e^(3x)dx = (x ^2 )[ 3 e^(3x) ] - [ 3 e^(3x) ](2x) ~ と考えるのです。 どこを間違って考えているのか指摘して頂けますか?

  • 逆関数の微分 dy/dx=1/(dx/dy)

    逆関数の微分はdy/dx=1/(dx/dy)と表せるらしいですが混乱してしまいよくわからなくなってしまいました。混乱の原因となった問題を通して教えてください。 (1)(x^3)'=3x^2 dy/dx=1/(dx/dy)を用いて、y=x^3の逆関数y=f(x)の導関数を求めよ (2)rが有理数の時、(x^r)'=rx^r-1を証明せよ。 (1)例えばy=h(x)逆関数というのはこれをxについて解き、yとxを入れ替えて求めますよね。(1)の場合y=f(x)はx=y^3⇔y=x^(1/3)ですので、これを微分してy'=とすれば答えは求められるようです。でも、dy/dx=1/(dx/dy)を使う場合がわかりません。 df(x)/dx=1/(dx/dy)=1/3y^2=3^(-2/3)と書いてあります。 (2)はpが自然数のときy=x^(1/p)とするとx=y^pなので、dy/dx=1/(dx/dy)=1/py^(p-1)・・・・=1/px^(1/p-1)と回答が始まっています。 (1)(2)では逆関数の使い方がそれぞれ異なる気がします。簡潔にいうと「dy/dx=1/(dx/dy)の(dx/dy)の部分に来るものがわかりません。」(1)では逆関数(xについて解いてそれをさらにxとyを取り替えたもの)がその部分に来ているのに(2)ではただ単にxについて解いたものがきていますよね(xとyを取り替えるといる作業がない)。 まったくわからないので教えてください。ほんとによろしくお願いします!!

  • ∫ e^(2x) x dx

    問題) Solve (1/x) dy/dx = e^(2x) cos^(2) y    模範途中式)∴ dy/dx = x  e^(2x) cos^(2) y ∴ ∫ 1/ (cos^2 y) dy = ∫ x e^(2x) dx    *     ∴ ∫ sec ^(2) y   dy = ∫ x e^(2x) dx ∴ tan y = x (½ e^(2x) ) - ∫(½ e^(2x) ) dx +   と続いていきます。 今回お聞きしたいのは ∴ ∫ 1/ (cos^2 y) dy = ∫ x e^(2x) dx   * なのですが、これは ∴ ∫ 1/ (cos^2 y) dy = ∫ e^(2x) x dx  としては間違いですか? ∫ u (dv/dx) dx = uv - ∫ v (du/dx) dx ← この公式を使って解いていく為には順番は重要になります。 ∫ e^(2x) x dx で解いていくと答えも違ってしまいます。 私はA x B =AB 、B X A = BA で同じ事だと考えてしまいます。 ∫ e^(2x) x dx ← この様な時、e を後ろにもってきて∫ x e^(2x) dx と書かないといけない、という決まりでもあるのでしょうか? 教えて下さい。

  • ∫{{(x+1)^n - 1} / x}dx = ?

    nは任意の自然数です。 ∫{{(x+1)^n - 1} / x}dxの積分がわかりません。 ∫{(x+1)^n / x}dx - ∫(1/x )dxと変形することを思いついたのですが、すると今度は∫{(x+1)^n / x}dxがわかりません (^^; nを定めてからの積分ならできるのですが、そうすると(x+1)^nの展開と、xで割って積分する作業が煩雑この上ありません。 こういった式でも「∫x^ndx=x^(n+1)/(n+1) + C」のように簡潔な形に出来ないものでしょうか? 見覚えのない形の式の積分ですが、そもそも積分が可能でしょうか。

  • ∫1/1+x^n dx

    ∫1/1+x^n dx (nは自然数) (区間0→1) n=1,2,3,4までは計算できるのですが5以上がわかりません。 わかる方に是非教えていただきたいです。