• ベストアンサー
  • すぐに回答を!

数学の問題で

数学の問題で 連立不等式 x^2-x-2<0・・・(1)(x-k+1)^2+k<0・・・(2) の解が存在するような実数kの値の範囲を求めよ。 という問題なのですが まず(1)より(x-2)(x+1)<0よって-1<x<2・・・(3) f(x)=(x-k+1)^2+k・・・(4) とおく (3)の範囲で放物線(4)の少なくとも最小値が負であればよいから I (4)の軸 k-1<-1つまりk<0のとき x=0で最小値をとるから f(0)=k^2+k k(k+1)<0 つまり -1<k<0(k<0をみたす) II -1≦k-1<2つまり0≦k<3のとき x=k-1で最小値をとるから f(k-1)=k<0 これは0≦k<3をみたさないので不適 III 2≦k-1つまり3≦kのとき x=2で最小値をとるから f(2)=k^2-5k+9<0 このとき実数解をもたないから不適 I~IIIより -1<k<0 と解いたのですが、これで適切でしょうか・・・・? もし間違っていたり、もっと他の解き方があったりしましたら指摘お願いします><

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数39
  • ありがとう数8

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

こんばんわ。 >と解いたのですが、これで適切でしょうか・・・・? きちんと書けていると思います。 IIIのところは、 f(2)= (k- 5/2)^2+ 9/4> 0より f(2)< 0を満たす kは存在しない。 と書いた方が、条件がはっきりしているのでいいかと思います。 自信もってくださいね。^^

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました!!!><

関連するQ&A

  • 数学の問題です

    関数のグラフの書き方、実数解の判定がわかりません どうぞよろしくお願いします (1)     f(x)=x^3-3(a-1)x^2-12ax についてf(x)の極大値M(a)のグラフをかきなさい -------------------- x= 2aの時 極大値 -4a^3-12a^2 x= -2の時 極大値 4+12a ○2a<-2の時 x=2a極大値 f(2a)=-4a^3-12a^2 極小値(-2,-16) ○2a>-2の時 x=-2 f(-2)=4+12a a=12 というところまでは解くことができるんですが、グラフに表すことができません グラフを書いて説明していただけると嬉しいです     (2)    x^3-kx+3k+6=0 が-3≦x≦3の範囲に2つの実数解をもつときkのとりうる範囲を求めなさい -------------------- 条件の軸についての質問です軸の範囲は-3≦k/2≦3でいいのでしょうか? また不等式が2/kの時、どのようにして他の条件と比べればよいのでしょうか 宜しくお願いします

  • 高1数学の問題です。

    ・二次不等式ax^2+(b-a)x+4>0の解が-1<x<4のとき、二次不等式bx^2+3ax+1<0を解きなさい。 ・実数を係数とする二次方程式x^2-2ax+a+6=0が、次の条件を満たすとき、定数aの値の範囲をそれぞれ求めなさい。 (1)正の解と負の解をもつ。 (2)異なる2つの負の解をもつ。 (3)すべての解が1より大きい。 どちらか一方でも良いので解き方を教えていただけると嬉しいです。

  • 数学の問題(関数)

    数学の問題でわからないのがあったので解き方を教えて下さい! 関数f(x)=(x+2)|x-6|がある 方程式f(x)-k=0が異なる3つの実数解をもつとき、定数kのとりうる値の範囲は、※※※である。このとき、3つの実数解をx1,x2,x3(x1<x2<x3)とするとx2-x1=x3-x2が成り立つのは、k=???のときである。 という問題です ※※※の部分と ???の部分を求めるためにどう解けばいいのでしょうか? ヒントでもいいので 何か教えて下さい!

  • 数学の問題

    数学の問題: 4x^2+4ax+5a-1=0が2つの異なる実数解を持ち、 1つはx<-2、他の解が-2<x<-1の範囲にある。このときa の値の範囲を求めよ。という問題で、f(x)=4x^2+4ax+5a-2とおいて、f(-1)>0かつf(-2)<0としてaの範囲を求めるのは、なぜ間違いですか?

  • 数学の問題がわからなくて困ってます

    全然解き方が分かりません。 回答とその問題の解き方を教えていただけると助かります。 1、不等式を解きなさい。 (1)2X^2-X-3≦0 (2)3X-4>-2X+1   X^2-2X-15<0   連立になります。 2、次の2次方程式が重解となる時の定数mの値と、その解を求めなさい。   X^2+2X+m-3=0 3、次の放物線の頂点を求めなさい。 (1)y=X^2+2X-3 (2)y=2X^2+8X (3)y=1/2X^2+3X+5 4、次の二次関数の最大値、最小値を求めなさい。 (1)y=-2X^2+4X (2≦X≦5) 5、y=2X^2+X+(3-m)のグラフがX軸より上(X軸に交わらない)ようになる定数mの値の範囲を求めなさい。 6、次の値を求めなさい。 (1)sin120° (2)cos120° (3)tan135° (4)sinθ=1/√2 (5)2cosθ+√3=0 (6)sin^2θ+cos^2θ=?  7、(6)を用いて次の方程式が成り立つとき、sinθの値を求めなさい。    5-7sinθ=5cos^2θ 8、余弦定理を使って△ABCにおいて、次のものを求めなさい。 (1)b=4、c=2、A=60°のとき、面積S (2)a=7、b=3、c=5のとき、cosAの値とA これで全部になります。 わからないところが多すぎて申し訳ないのですが、どうかよろしくお願いします。

  • 数I 二次方程式の範囲 訂正

    もう一度解きなおしてみました。 「方程式x&#178;&#65293;2ax+2a&#178;&#65293;5が1より大きい相異なる2個の実数解をもつような定数aの値の範囲を求めよ。」 自分の回答▽ f(x)=x&#178;&#65293;2ax+2a&#178;&#65293;5とするとf(x)=(x&#65293;a)&#178;+a&#178;&#65293;5 二次方程式f(x)=0が1より大きい相異なる2個の実数解をもつための条件は放物線y=f(x)が1より大きいx軸の正の部分と異なる2点で交わることである。これは次の(1)~(3)が同時に成り立つことと同値である。 (1)f(x)=0の判別式をDとするとD/4=a&#178;&#65293;(&#65293;5)=a&#178;+5>0 これを解いてa<&#65293;√5、√5<a…(1) (2)放物線y=f(x)の軸は直線x=aなので、この軸は1より大きいからa>1…(2) (3)f(x)>0から1&#65293;2a+2a&#178;&#65293;5>0よってa>2、a>5…(3) (1)(2)(3)の共通範囲を求めてa>5 ,, となりました。合ってますか? それと、この放物線のグラフを書く場合はy軸は省略してもいいのでしょうか。

  • 数学の問題です

     x^3-kx+3k+6=0 が-3≦x≦3の範囲に2つの実数解をもつときkのとりうる範囲を求めなさい -------------------- 条件の軸についての質問です軸の範囲は-3≦k/2≦3でいいのでしょうか? また不等式が2/kの時、どのようにして他の条件と比べればよいのでしょうか 宜しくお願いします

  • 【問題】kを実数として, f(x)=x^2-2kx+(1/5)*(2k

    【問題】kを実数として, f(x)=x^2-2kx+(1/5)*(2k-1)*(4k-3)とおく。方程式f(x)=0が実数解α,β(α≦β)をもつとき (1)α,βがα≦1≦βを満たすようにkの値の範囲を定めよ。 (2)(1)の場合にf(x)の最小値g(k)がとりうる範囲を求めよ。 (1)はf(1)≦0という条件しか思いつきません^^;あとこれに,なにか付け加えたらいいような気がするのですが…これから進ません^^; どなたかよろしくお願いします。

  • 高校数学の問題です。

    以下の問題の(2)(3)について教えてください。 実数全体を定義域とする関数 f(x) = 2^3x &#65293;9・2^2x+1 +15・2^x+2 について、 次の問いに答えよ。 ※「2の3x乗」、「-9・2の2x+1乗」、「+15・2のx+2乗」 (1) 2^x = t とおく。関数 f(x) を t で表し、得られた t の関数を g(t) とおく。   関数 g(t) の増減と極値を調べ、 y = g(t) のグラフをかけ。   ただし、g(t) の定義域は、x が実数全体を動くときに t が動く範囲とする。   =>これはできました。 (2) 方程式 f(x) = k が異なる正の解2個と負の解1個をもつような実数の定数 k の値の範囲を求めよ。 (3) k が(2)で求めた範囲を動くとき、方程式 f(x) = k の3個の解の和のとり得る   値の範囲を求めよ。

  • 数学の問題がわからなくて困ってます…

    二次関数の問題です…どなたか解説してくださいませんか? aを定数とし,f(x)=(a+1)x^2-2(a-3)x+2a について考える (1)a=2のとき、f(x)が最小となるxの値は x=(1)である。 (2)y=f(x)のグラフがx軸と異なる二点で交わるaの範囲は (2)<a<(3)、(4)<a<(5) (3)方程式f(x)=0が正の解と負の解をもつときのaの値の範囲は(6)<a<(7) (4)方程式f(x)の1つ解が-7と-6の間、他の解が0と1の間にあるときのaの値の範囲は(8)<a<(9) こたえ (1)-1/3 (2)-9 (3)-1 (4)-1 (5)1 (6)-1 (7)0 (8)-7/65 (9)0