• ベストアンサー
  • すぐに回答を!

形変換 アフィン変換 

形変換 アフィン変換  前回同様の内容で質問させて頂きました。 不明な点がいくつかありますので改めて質問させて頂きます。 前回の質問内容:http://okwave.jp/qa/q5957715.html アフィン変換 ⊃ 線型変換 であるとご回答頂いたのですが、これはアフィン変換は 線形変換を含むという認識で良いでしょうか? 線形変換はアフィン変換の部分集合だと理解したのですが間違いでしょうか? また、線形変換及びアフィン変換の定義に関して ・線型変換の定義: [1]  体 K 上のベクトル空間 V 上の変換 f で、  x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 ・アフィン変換の定義: [2]  体 K 上のベクトル空間 V 上の変換 f で、  x,y∈V, a,b∈K, について a+b = 1 のときは f(ax + by) = a f(x) + b f(y)  が成り立つもの。 とご教示頂きました。 定義[1],[2]について考えると、 [1]が成り立てば、[2]は成り立つと思います。 [1]はa+b=1によらず、f(ax+by)=af(x)+bf(y)が成り立ちますから。 翻って、[1]ならば[2]が成り立つと言うことは線形変換がアフィン変換を含むと 言う事になりませんか?この点で混乱しています・・・ ご回答よろしくお願い致します。

  • RY0U
  • お礼率40% (434/1065)

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数269
  • ありがとう数6

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • alice_44
  • ベストアンサー率44% (2109/4758)

線型変換を定義するとき、[1] の他に… [1'] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [1''] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 …などとしても善いです。 [1] ⇔ [1'] ⇔ [1''] が同値であることは 簡単に示すことができます。 高校の教科書では、[1] より [1'] のほうが お馴染みじゃないかな? で、[1''] と [2] を比べてみると、 線型変換とアフィン変換の対比が よりハッキリするかと。 線型変換では、スカラー倍するという操作が 変換の前後で保存されることから、 スカラー倍の相似中心である原点の存在が 重要になってくるのです。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご回答ありがとうございます。本当に親切にご回答頂きありがとうございます。 すっきりしました。 なるほど、定義も一つではないのですね。 「スカラー倍の相似中心である原点の存在が重要になってくる」と言う事が原点を表すと認識しました。 [2](アフィン変換)の定義にはf(ax) = a f(x) がないので条件としても厳しいこともすっきりしました。 [1] ⇔ [1'] ⇔ [1''] が同値であることはどのように示せば良いのでしょうか? 具体的に、(0,1),(1,0)などのベクトルを与えて考えれば良いでしょうか?

関連するQ&A

  • 線形変換の定義

    線形変換の定義 前回の質問で線形変換とアフィン変換について質問させて頂きました。 前回の質問内容:http://okwave.jp/qa/q5973471.html 線形変換とアフィン変換については理解する事が出来ました。 ご回答下さった方本当にありがとうございます。 線形変換の定義を幾つか示して頂いたのですが、 線型変換の定義: [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 線型変換の定義: [1’] [1']?体 K 上のベクトル空間 V 上の変換 f で、?x,y∈V, a∈K について常に?f(x+y) = f(x) + f(y),? f(ax) = a f(x) が成り立つもの。 線形変換の定義:[1''] ?体 K 上のベクトル空間 V 上の変換 f で、?x,y∈V, a,b∈K について a+b=1 のとき?f(ax + by) = a f(x) + b f(y),? f(ax) = a f(x) が成り立つもの。 定義[1] ⇔ [1'] ⇔ [1''] が同値であることはどのように示せば良いのでしょうか? また、定義[1'']におけるa+b=1とは具体的に何を示しているのでしょうか? ご回答よろしくお願い致します。

  • 線形変換の定義について

    線形変換の定義について 線形変換の定義 [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [3] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 がすべて同値であることを示したいのですが、どのようにすればよいでしょうか?

  • 線形変換の定義 証明

    線形変換の定義 証明 以前ご回答頂き理解したつもりだったのですが・・・ 実際に自分で証明を試みましたが出来ませんでした。 理解出来ていなかったので再々度質問させて頂きます。 重複質問で申し訳ないですm(_ _)m 線形変換の定義 [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [3] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 *****以下質問内容***** [1]と[3]が同値であることの証明は理解できたのですが、 [1]と[2]が同値であることを証明できません。 [1]と[2]が同値であることの証明 [1]の定義に従い、[2]を示す。 ・x,y∈V,a,b∈Kにおいてa=b=1∈Kとおくと  x,y∈V,1∈K→f(ax+by)=f(1*x+1*y)=1*f(x)+1*f(y)=f(x)+f(y)=f(x+y) ・x,y∈V,a,b∈Kにおいてy=0∈V,b=0∈Kとおくと  x,0∈V,a,0∈K→f(ax+by)=f(ax+0*0)=f(ax)+0*f(0)=f(ax)=af(x) [2]の定義に従い、[1]を示す。 ・x,y∈V,a∈Kにおいて  f(x+y)がf(ax+by)=af(x)+bf(y)となる事が示せません・・・  そもそも、a∈Kでbはどこからでてくるのでしょうか? [1]→[2],[2]→[1]であるなら、[1]と[2]は同値であると示せると 思うのですが、[2]→[1]はどのようにすれば示せるのでしょうか? お手数ですが、ご回答よろしくお願い致します。

その他の回答 (2)

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

前回の回答者です。 条件 [1] が成立すれば、条件 [2] も成立するのだから、 ある空間が [1] を満たす空間(線型空間)のひとつであれば、 [2] を満たす空間(アフィン空間)のひとつでもある …ということです。 ベン図参照。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご回答ありがとうございます。まだ、少し混乱しています・・・ 線型変換の定義: [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 ⇒線形変換が成立する条件は、原点が定められている場合のみであるからアフィン変換より条件が厳しい。 アフィン変換の定義: [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について a+b = 1 のときは f(ax + by) = a f(x) + b f(y) が成り立つもの。 ⇒アフィン変換が成立する条件は、原点を通らずともa+b=1 が成り立てば良い。 という認識で良いでしょうか? また、a+b = 1 は直感的には何を表しているのでしょうか?

  • 回答No.1

[1]=>[2] なんだから {[1]を満たす要素の集合}⊂{[2]を満たす要素の集合} だというだけ. 集合の包含関係と命題の因果関係が ごっちゃになってないか? そもそも,アフィン「空間」ってのは 線型「空間」の拡大概念なんだから アフィンの方が広い. アフィン空間に「原点という特別な点」を付与したのが線型空間. 条件がきついほうが小さくなるのは当然でしょう. もっと「直観」を養いましょう. 機械的な計算だけではすぐに行き詰ります

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 線形変換の定義

    線形変換の定義 以前から何度が質問させて頂いている者です。 新規で質問させて頂きます。 前回の質問内容:http://okwave.jp/qa/q5985949.html 前回の質問内容で、線形変換の定義において 体 K 上のベクトル空間 V 上の変換 f で、x,y∈V, a,b∈K について a+b=1 のときf(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 について定義の取り方で、a+b=1を一次関数と見なせるとご回答頂きました。 回答頂いた内容は私には難しかったので内容を読み返します。 ここで、f(ax+by)という関数は具体的にはどのような関数になるのでしょうか? 具体的に式を記載して頂けると有り難いです。 線形空間であれば、y=axのイメージなのですが・・・うまくイメージ出来ません・・・ 以上、よろしくお願い致します。

  • Affine subset (アフィン部分集合)

    線型代数を一通り学んだ者です。 なかなか問題の誘導に乗れませんので、分かる方教えて下さい。 ●定義 任意の x,y∈M について、λx+(1-λ)y∈M ならば M はアフィン部分集合。 部分集合 B:={x_1, x_2, ... , x_n}⊆M について、すべての m∈M がアフィン結合 x=λ_1x_1 + λ_2x_2 + … +λ_nx_n (ただしλ_1+λ_2+ … +λ_n = 1) で一意に表せるとき、Bはアフィン基底である。 ●問題 Mを実ベクトル空間Vのアフィン部分集合だとする。M⊆V。 (1) 集合 M+a (全てのa∈V) が affine であることを示せ。 (2) 零ベクトル 0∈M だとすると、Mは部分空間であることを示せ。 (3) M=U+a となるような a∈V と 部分空間Uがあることを示せ。 (4) UはMによって一意的に定まることをしめせ。また、aはMによって定まるか? (5) dimM=k (有限) だとする。Mが少なくとも一つ k+1 の元からなるアフィン基底を持つことを示せ。また、Mのすべてのアフィン基底がちょうど k+1 の元から成ることを示せ。 (6) M={x=(x,y,z,w)∈R^4 : x-2y+z=3, x+5z-2w=1}だとする。Mのアフィン基底ひとつを求めよ。 部分的には分かるのですが、なかなか全体の話がみえません。 詳しく答えて下さると、有り難いです。よろしくお願いします。

  • 線形写像と線形変換

    線形写像と線形変換 V , W をK上のベクトル空間とする。このときベクトル空間Vからベクトル空間Wへの写像fが、 Vの任意の要素x,yに対してf(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fをVからWへの線形写像と言う。 これが線形写像の定義です。 別の記載では、R^n,R^mをk上のベクトル空間とする。このときベクトル空間R^n からベクトル空間R^m への写像f がR^nの任意の要素x,yに対して f(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fを R^n からR^m への線形写像という。 ここで、テキストにはfがVからV自身への線形写像である時fを線形変換と呼ぶと記載されているのですが、 「VからV自身への線形写像」のイメージがあまりつきません・・・ 次元が同じ場合であれば線形変換?と思ったのですが間違いでしょうか? よろしくお願い致します。

  • アフィン変換について

    T=( 1 0 -1 1 ) (-1 0 0 2 ) ( 0 1 1 0 ) ( 0 0 -1 2 ) この様な4×4行列はアフィン行列なのでしょうか? またもし違うのならその理由も是非教えて下さい。 いまいちアフィン変換の定義を読んでも分からないので質問させていただきました。よろしくお願いします。

  • 線形写像と線形変換

    線形写像と線形変換 以前、同様の題目で質問させて頂きました。 前回の質問内容:http://okwave.jp/qa/q5940429.html 線形写像と線形変換についての違いは理解出来たのですが、 分からない点があるので新規で質問させて頂きます。 線形写像の定義を表す場合、 R^n,R^mをR上のベクトル空間とする。 ベクトル空間R^n からベクトル空間R^m への写像f がR^nの任意の要素x,yに対して f(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fを R^n からR^mへの線形写像という。 k∈Rである。 上の記述では何か間違っている点はありますでしょうか? n次元ベクトル空間はR^nとよく表記されているのを目にします。 Rは実数を表すイニシャルだと認識しています。しかし、kは複素数や虚数でも成り立つと 思うのでk∈Rと言う表現は正しくないのでは?と考えた次第です。 定数倍を表す場合は別の基礎体を考えなければならないと言う事でしょうか? 基礎体はRではなくKとして表記した方が正しいでしょうか? また、次元を表すnやmに関してはn,mは実数を前提として基礎体をRとしているので わざわざn,m∈Rと表記する必要は無いと考えているのですが、n,m∈Rも表記した方が 良いのでしょうか? 初歩的な質問で大変恐縮ですがご回答よろしくお願い致します。 初歩的な質問ですいません・・・よろしくお願い致します。

  • ユークリッド空間 ユークリッド変換

    ユークリッド空間とはユークリッド変換の対象となる空間であると認識 しています。 ユークリッド変換は、回転、鏡映、平行移動です。 ユークリッド変換は、直交変換+平行移動と説明されたりしますが、 直交変換とはなんでしょうか?直交行列と関係あるのでしょうか? 直交行列は、ある行列Aの転置行列がAの逆行列と等しい行列で ある事は理解できています。 回転行列は直交行列の一つだと認識しています。 線形変換(回転、鏡映、拡大・縮小、剪断)のなかで直交変換に あたるものは回転以外になにがありますでしょうか?鏡映も回転と ほとんど同意なので含まれると考えています。 ユークリッド変換の数学的な定義は調べたのですがわかりませんでした。 ユークリッド変換の数学的な定義を以下のように教えて頂けませんか? ちなみに、 線形変換の定義は、 K上の線形空間V上の変換fで、x,y∈V,a,b∈Kについて常に、 f(ax+by)=af(x)+bf(y)が成り立つもの。 アフィン変換の定義は、 K上のアフィン空間W(線形空間を含む)上の変換fで、x,y∈W,a,b∈Kについてa+b=1のとき、 f(ax+by)=af(x)+bf(y)が成り立たちかつ全単射であるもの。 よく私たちが生活している空間を3次元ユークリッド空間などと呼んだりしますが、 これはなぜでしょうか?ユークリッド空間では、回転と鏡映(対称移動)、平行移動が 定義された空間で私たちが生活している空間とは無関係な気がします・・・ 私たちが生活している空間には、~空間といったような名称があるのですか? 長々と失礼しました。 質問を整理させて頂きます。以下に質問順に番号をふりました。 (1)直交変換とはなんでしょうか? (2)線形変換の中で直交変換であるものはなんでしょうか? (3)ユークリッド変換の定義を教えて貰えないでしょうか? (4)ユークリッド空間と私たちが日常生活している空間は関係あるのでしょうか? 以上、ご回答よろしくお願い致します。

  • 一次変換

    定義1:平面上の点P(x,y)から点P'(x',y')への変換fが次の条件を満たす。 f:{x'=ax+by {y'=cx+dy (a,b,c,dは定数) 定義2:任意のベクトルx,yと定数αに対して変換fが次の2つの条件を満たす。 (1)f(x+y)=f(x)+f(y) (2)f(αx)=αf(x) 定義1は定義2を満たすことを示せ。 また、定義2は定義1を満たすことを示せ。 証明するような問題は苦手で、どうしたらいいのか全く分かりません。 どなたか教えていただけないでしょうか? 詳しく解説していただけると有難いですが、解くためのヒントなどでも良いので、お願いします。

  • 線形変換について

    線形変換について {a,b,c}を3次元ベクトル空間Vの基底とし、fを次のようなVの線形変換とする。 f(a)=-a-c f(b)=a f(c)=a+b+2c (1){a+b+c,a+b,a}はVの基底であることを示せ (2)Vの基底{a+b+c,a+b,a}に関するfの表現行列Aを求めよ。 (1)がさっぱりわかりません。 (2)の方は 一様答えが出せて A= -1 1 1    0 0 1    -1 0 2 という行列の形になりました。 回答お願いします

  • アフィン変換でR^2の直線は直線に移る、逆は成立するか?

    アフィン変換でR^2の直線は直線に移る、逆は成立するか? R^2→R^2 (x,y)→(ax+by+c,dx+ey+d) ただし、ae-bd≠0 というアフィン変換で、任意の直線は直線に移ります。 では、任意の直線が直線に移る変換は、アフィン変換に限られるのでしょうか? ただし、変換の意味に全単射を含めるか含めないかですが、いちおう、簡単のために、含めるとしておきます。 ここで難しいと思っているのは、直線が直線に移るといっても、点の順番が保たれるとは限らないことです。 例えば、 R^2の点(1,0)と点(-1,0)を交換し、それ以外の点はそのままにする変換を考えます。 y=0という直線はy=0という直線に移りますが、x=1という直線は直線に移りません。1点だけが離れています。 直線上の点の順番が保たれないものがひとつでもあれば、ある直線は直線に移らないことだろうとは思うのですが、 そのへんをうまく示すことが出来ません。 どうかお力をお貸し願えたらと思います。

  • 大学数学の代数に詳しい方。教えて下さい。

    R上で定義された無限回微分可能な実数値関数全体が作る実ベクトル空間をC∞(R)とする。 C∞(R)の各元f(x)に導関数f'(x)を対応させる写像をDとする。 DはC∞(R)上の線形変換である。Dの固有値と固有ベクトルを求めよ。