線形変換における自己随伴とは?

このQ&Aのポイント
  • 線形変換における自己随伴とは、線形空間の随伴写像が自身と一致することを意味します。
  • 随伴写像とは、線形変換Aに対して、その双対空間の線形変換Cが存在し、任意のベクトルxとその双対空間のベクトルyに対して、(Ax, y) = (x, Cy)の関係が成り立つことを指します。
  • 特にA=Cの場合、CはAの自己随伴であり、線形変換Aとその随伴写像Cが一致することを意味します。
回答を見る
  • ベストアンサー

線形変換にて自己随伴とは?

VをF上の線形空間とする。 [随伴写像とは] A∈L(V)({=f∈Map(V,V);f is linear}),∃1C∈L(V')(V'はF線形空間Vの双対空 間);∀(x,y)∈V×V',y(Ax)=(Cy)(x)(∈F) (i.e. [Ax,y]=[x,Cy]) (⇔def) C をAのadjoint(随伴写像)と言い、adjA:=Cと示す。 (∃1は"一意的に存在する"を意味する) が随伴写像の定義だと思います。 と随伴写像の定義までわかりましたが自己随伴変換(self-adjoint transformation)の定義が分かりません。 上記で特にA=Cの場合(つまりadjA=Aの場合),CはAの"自己随伴である" と言ったりするのでしょうか? 自己随伴の定義をご教示ください。

質問者が選んだベストアンサー

  • ベストアンサー
noname#50894
noname#50894
回答No.1

“随伴写像(もしくは共役写像)”は、内積が定義される線形空間 (ユニタリー空間もしくはヒルベルト空間)上で定義されるので、 一般にV,V'をHilbert空間として 線形写像A:V→V',C:V'→Vについて、 (Ax,y)=(x,Cy)[x∈V,y∈V'] [左辺はV'における内積、右辺はVにおける内積] のとき、CをAの随伴写像写像という。 特に、V=V'でC=Aの時、CをAの自己随伴写像という。 Nnarumiさんのご質問の用語の使い方が不明で、 >A∈L(V)({=f∈Map(V,V);f is linear}),∃1C∈L(V')(V'はF線形空間Vの双対空間) >;∀(x,y)∈V×V',y(Ax)=(Cy)(x)(∈F) (i.e. [Ax,y]=[x,Cy]) の最後の演算は、内積を前提にしているのでしょうかね。

Nnarumi
質問者

お礼

大変有難うございます。 > “随伴写像(もしくは共役写像)”は、内積が定義される線形空間 > (ユニタリー空間もしくはヒルベルト空間)上で定義されるので、 > 一般にV,V'をHilbert空間として > 線形写像A:V→V',C:V'→Vについて、 > (Ax,y)=(x,Cy)[x∈V,y∈V'] > [左辺はV'における内積、右辺はVにおける内積] > のとき、CをAの随伴写像写像という。 > 特に、V=V'でC=Aの時、CをAの自己随伴写像という。 ご回答有難うございます。 F線形空間V,V'がHilbert空間とすると ∀A∈L(V,V'),x∈V,y∈V',∃1C∈L(V',V) such that ξ(x,C(y))=ζ(A(x),y) (注: ξ(,)とζ(,)は夫々V上とV'上の内積を表す) と言え,このCをmap of map of adjoint of Aと呼ぶのですね。 特に F線形空間VがHilbert空間とすると ∀A∈L(V),x,y∈V,∃1C∈L(V) such that ξ(x,C(y))=ξ(A(x),y) (注: ξ(,)はV上の内積を表す) 更にA=Cの場合,AをCの自己随伴写像と呼ぶのですね。 > Nnarumiさんのご質問の用語の使い方が不明で、 > >A∈L(V)({=f∈Map(V,V);f is linear}),∃1C∈L(V')(V'はF線形空間Vの双対空間) > >;∀(x,y)∈V×V',y(Ax)=(Cy)(x)(∈F) (i.e. [Ax,y]=[x,Cy]) > の最後の演算は、内積を前提にしているのでしょうかね。 いえ、マル括弧は演算順序を分かり易くするためだけのものです。 箱括弧は[Ax,y]はy(A(x))(xを写像Aで写し,それを写像yで写す)を意味する記号です。

関連するQ&A

  • 随伴写像の存在性の証明は?

    随伴写像についての質問です。 [随伴写像とは] A∈L(V)({=f∈Map(V,V);f is linear}),∃1C∈L(V')(V'はF線形空間Vの双対空間);∀(x,y)∈V×V',y(Ax)=(Cy)(x)(∈F) (i.e. [Ax,y]=[x,Cy]) (⇔def) C をAのadjoint(随伴写像)と言い、adjA:=Cと示す。 ここで 「A∈L(V)({=f∈Map(V,V);f is linear})に対して∀(x,y)∈V×V',y(Ax)=(Cy)(x)(∈F) (i.e. [Ax,y]=[x,Cy]) を満たすようなC∈L(V')(V'はF線形空間Vの双対空間)が一意的に存在する」 を示したいのですが どうやって存在性を示せばいいかわかりません。 Cをどのように採ればいいのでしょうか?

  • 線形変換(随伴変換)に関する質問です

    「線形空間Vのひとつの基底E=<e[1],e[2],・・・e[n]>を選べば、 VからK^nへの同型写像ψが決まるから、この意味で、基底(E;ψ)と言うことにする。 Vをユニタリ空間、TをVの線形変換とし、ある正規直交基底に関するTの行列をAとする。この基底に関して、 Aの随伴行列A^*によって表現されるVの線形変換をTの随伴変換と言い、T^*で表す。 T^*は、Vの任意の二元x,yに対して内積に関する等式 [T^*(x),y]=[x,T(y)]・・・※ が成立することで特徴づけられる。 実際、この基底を(E;ψ)とすれば [A^*(ψ(x)),ψ(y)]=[ψ(x),A(ψ(y))]より※が成立。」 という記述が教科書にあったのですが、 ※の成立を示すのに [A^*(ψ(x)),ψ(y)]=[ψ(x),A(ψ(y))]を示している理由を 私は [T^*(x),y]=[ψ^(-1)(A^*(ψ(x)),ψ^(-1)(ψ(x))] 今、ψ^(-1)は計量同型写像であるから [ψ^(-1)(A^*(ψ(x)),ψ^(-1)(ψ(x))]=[A^*(ψ(x)),ψ(y)] 同様に [x,T(y)]=[ψ(x),A(ψ(y))]なので 結局、※は[A^*(ψ(x)),ψ(y)]=[ψ(x),A(ψ(y))]に帰着される・・。 と考えたのですが、これであっていますか? ψが計量同型写像だからそのい逆写像も計量同型写像であるので [ψ^(-1)(a),ψ^(-1)(b)]=[a,b]である というのを使っているのかな?と思ったのですが。 どなたか詳しい方、添削よろしくお願い致します。 ※[,]は内積、ψ^(-1)はψの逆写像の意です。

  • 等式{y∈V*;y(x)=0(∈F) (∀x∈ran(A))}=Ker(A')の証明が滞ってしまいます

    [問]Vを有限次元F線形空間とし、A∈L(V)(={A;AはVからVの線形変換}) (1) {y∈V*;y(x)=0(∈F) (∀x∈ran(A))}=Ker(A') (2) {y∈V*;y(x)=0(∈F) (∀x∈Ker(A))}=ran(A') を示せ。 『V*はVの双対空間を表してます。ran(A)は写像Aの値域を表してます。 A'はAの随伴写像を表しています。 ※随伴写像とは∀(x,y)∈V×V*, y(Ax)=(Cy)(x)(∈F)の時のCの事でA'で表します』 という問題なのですがなかなか先に進めません。 (1)については ∀y∈{y∈V*;y(x)=0(∈F) (∀x∈ran(A))}を採ると y(ran(A))={0}でran(A)⊂Ker(y) … からどうすればいいのでしょうか? (2)については ∀y∈{y∈V*;y(x)=0(∈F) (∀x∈Ker(A))}, y(Ker(A))={0}からKer(A)⊂Ker(y) … からどうすればいいのでしょうか?

  • 線形写像と線形変換

    線形写像と線形変換 V , W をK上のベクトル空間とする。このときベクトル空間Vからベクトル空間Wへの写像fが、 Vの任意の要素x,yに対してf(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fをVからWへの線形写像と言う。 これが線形写像の定義です。 別の記載では、R^n,R^mをk上のベクトル空間とする。このときベクトル空間R^n からベクトル空間R^m への写像f がR^nの任意の要素x,yに対して f(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fを R^n からR^m への線形写像という。 ここで、テキストにはfがVからV自身への線形写像である時fを線形変換と呼ぶと記載されているのですが、 「VからV自身への線形写像」のイメージがあまりつきません・・・ 次元が同じ場合であれば線形変換?と思ったのですが間違いでしょうか? よろしくお願い致します。

  • 自己随伴写像の表現行列が共役転置になる命題が示せません

    宜しくお願い致します。 [命題] Vをn次元内積空間,f∈L(V):={f;線形写像f:V→V},β:={x_1,x_2,…,x_n}をVの正規直交基底 とする。 内積<f(x),y>=<x,g(y)>(∀x,y∈V)の時,f=g(即ち,gはfの自己随伴写像)ならば (a_ij)=(a~_ji) ((a_ij)はfのβにおける表現行列,(a~_ji)は(a_ij)の共役転置) となる事を示せ。 という問題に難儀しています。 題意よりf(x_j)=Σ[i=1..n]a_ijx_iと書け、 内積の定義は複素線形空間Vの任意の要素x,yに対して複素数<x,y>が定まり,次の4条 件を満たす時<x,y>をxとyの内積といい,内積が定義されている空間Vを内積空間と言 う。 (i) <x,x>≧0; <x,x>=0⇔x=0 (ii) <x,y>=<y,x>~ (~はバーを表す) (iii) <x+y,z>=<x,z>+<y,z> (iv) <αx,y>=α<x,y> から先に進めません。この命題はどのようにして証明すればいいのでしょうか?

  • 線形変換の定義

    線形変換の定義 前回の質問で線形変換とアフィン変換について質問させて頂きました。 前回の質問内容:http://okwave.jp/qa/q5973471.html 線形変換とアフィン変換については理解する事が出来ました。 ご回答下さった方本当にありがとうございます。 線形変換の定義を幾つか示して頂いたのですが、 線型変換の定義: [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 線型変換の定義: [1’] [1']?体 K 上のベクトル空間 V 上の変換 f で、?x,y∈V, a∈K について常に?f(x+y) = f(x) + f(y),? f(ax) = a f(x) が成り立つもの。 線形変換の定義:[1''] ?体 K 上のベクトル空間 V 上の変換 f で、?x,y∈V, a,b∈K について a+b=1 のとき?f(ax + by) = a f(x) + b f(y),? f(ax) = a f(x) が成り立つもの。 定義[1] ⇔ [1'] ⇔ [1''] が同値であることはどのように示せば良いのでしょうか? また、定義[1'']におけるa+b=1とは具体的に何を示しているのでしょうか? ご回答よろしくお願い致します。

  • 線形変換の定義について

    線形変換の定義について 線形変換の定義 [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [3] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 がすべて同値であることを示したいのですが、どのようにすればよいでしょうか?

  • 自己随伴写像の表現行列が対称行列とならない例は?

    宜しくお願い致します。 [問]Vを有限次元実内積空間(dimV=n)とする。 γ={x1,x2,…,xn}は任意のVの基底とする。 VからVへの線形写像fが自己随伴(∀x,y∈V,<f(x),y>=<x,f(y)>(<,>は内積))である時, fの表現行列Aは対称行列となる。 の真偽判定の問題です。 正解は偽のようなですがこの反例としてどのようなものが挙げられますでしょうか?

  • 線形変換の定義

    線形変換の定義 以前から何度が質問させて頂いている者です。 新規で質問させて頂きます。 前回の質問内容:http://okwave.jp/qa/q5985949.html 前回の質問内容で、線形変換の定義において 体 K 上のベクトル空間 V 上の変換 f で、x,y∈V, a,b∈K について a+b=1 のときf(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 について定義の取り方で、a+b=1を一次関数と見なせるとご回答頂きました。 回答頂いた内容は私には難しかったので内容を読み返します。 ここで、f(ax+by)という関数は具体的にはどのような関数になるのでしょうか? 具体的に式を記載して頂けると有り難いです。 線形空間であれば、y=axのイメージなのですが・・・うまくイメージ出来ません・・・ 以上、よろしくお願い致します。

  • 線形変換の定義 証明

    線形変換の定義 証明 以前ご回答頂き理解したつもりだったのですが・・・ 実際に自分で証明を試みましたが出来ませんでした。 理解出来ていなかったので再々度質問させて頂きます。 重複質問で申し訳ないですm(_ _)m 線形変換の定義 [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [3] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 *****以下質問内容***** [1]と[3]が同値であることの証明は理解できたのですが、 [1]と[2]が同値であることを証明できません。 [1]と[2]が同値であることの証明 [1]の定義に従い、[2]を示す。 ・x,y∈V,a,b∈Kにおいてa=b=1∈Kとおくと  x,y∈V,1∈K→f(ax+by)=f(1*x+1*y)=1*f(x)+1*f(y)=f(x)+f(y)=f(x+y) ・x,y∈V,a,b∈Kにおいてy=0∈V,b=0∈Kとおくと  x,0∈V,a,0∈K→f(ax+by)=f(ax+0*0)=f(ax)+0*f(0)=f(ax)=af(x) [2]の定義に従い、[1]を示す。 ・x,y∈V,a∈Kにおいて  f(x+y)がf(ax+by)=af(x)+bf(y)となる事が示せません・・・  そもそも、a∈Kでbはどこからでてくるのでしょうか? [1]→[2],[2]→[1]であるなら、[1]と[2]は同値であると示せると 思うのですが、[2]→[1]はどのようにすれば示せるのでしょうか? お手数ですが、ご回答よろしくお願い致します。