線形変換の定義

このQ&Aのポイント
  • 線形変換の定義について解説します
  • 線形変換とは、体K上のベクトル空間V上の変換fで、特定の性質を満たすものです
  • 具体的な式を用いて線形変換の定義を説明します
回答を見る
  • ベストアンサー

線形変換の定義

線形変換の定義 以前から何度が質問させて頂いている者です。 新規で質問させて頂きます。 前回の質問内容:http://okwave.jp/qa/q5985949.html 前回の質問内容で、線形変換の定義において 体 K 上のベクトル空間 V 上の変換 f で、x,y∈V, a,b∈K について a+b=1 のときf(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 について定義の取り方で、a+b=1を一次関数と見なせるとご回答頂きました。 回答頂いた内容は私には難しかったので内容を読み返します。 ここで、f(ax+by)という関数は具体的にはどのような関数になるのでしょうか? 具体的に式を記載して頂けると有り難いです。 線形空間であれば、y=axのイメージなのですが・・・うまくイメージ出来ません・・・ 以上、よろしくお願い致します。

  • RY0U
  • お礼率40% (436/1071)

質問者が選んだベストアンサー

  • ベストアンサー
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

a+b=1だけを一次関数と見なせるとはいってません 「「…a+b=1~は一次関数を表す」でよい」の中で 省略された~の部分を復元すると、 (x,y∈V, a,b∈K について) 「a+b=1 のとき f(ax+by)=af(x)+bf(y) が成り立つとき f は一次関数を表す」 となります。 線型変換の定義: [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 アフィン写像(一次関数)の定義:(2) 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のときf(ax + by) = a f(x) + b f(y) が成り立つもの。 線形変換fは任意のa,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つから a+b=1のときも当然f(ax+by) = a f(x) + b f(y)が成り立つから 線形変換fはアフィン写像(一次関数)となります。 しかしアフィン写像(一次関数)fは線形変換とならない場合があります。 線形変換でない一次関数(アフィン写像)の例) f(x)=x+1 a=1/2,b=1/2,x=1,y=1,a+b=1 → f(ax+by)=f((1/2)*1+(1/2)*1)=f(1)=2=1+1=(1/2)*2+(1/2)*2=(1/2)f(1)+(1/2)f(1)=af(x)+bf(y) a=1,b=1,x=1,y=1,a+b≠1 f(ax+by)=f(2)=3≠4=1*2+1*2=1*f(1)+1*f(1)=af(x)+bf(y) 線形変換の例) g(x)=x a=1/2,b=1/2,x=1,y=1,a+b=1 → g(ax+by)=g((1/2)*1+(1/2)*1)=g(1)=1=1/2+1/2=(1/2)*1+(1/2)*1=(1/2)g(1)+(1/2)g(1)=ag(x)+bg(y) a=1,b=1,x=1,y=1,a+b≠1 g(ax+by)=g(2)=2=1*1+1*1=1*g(1)+1*g(1)=ag(x)+bg(y) ・なお全単射アフィン写像をアフィン変換といいます。

RY0U
質問者

補足

ご回答ありがとうございます。 (x,y∈V,a,b∈Kについて)「a+b=1」のとき f(ax+by)=af(x)+bf(x)が成り立つときfは一次関数を表す。 という事で理解しました。 線形変換の定義を整理すると、 :線形変換の定義(1)  体K上のベクトル空間V上の変換fで、x,y∈V,a∈Kについて常に  f(ax+by)=af(x)+bf(y)が成り立つもの。 :線形変換の定義(2)  体K上のベクトル空間V上の変換fで、x,y∈V,a∈Kについて常に  f(x+y)=f(x)+f(y),f(ax)=af(x)が成り立つもの。 :線形変換の定義(3)  体K上のベクトル空間V上の変換fで、x,y∈V,a∈Kについて「a+b=1」  のとき、f(ax+by)=af(x)+bf(y),f(ax)=af(x)が成り立つもの。 線形変換の定義(1)~(3)は全て同じ意味だと思いますが、アフィン変換と対比する際に 定義(3)が分かりやすいため定義(3)を採用しようと思います。 ここで、(x,y∈V,a,b∈Kについて)「a+b=1」のときf(ax+by)=af(x)+bf(x)が 成り立つときfは一次関数を表し、f(ax)=af(x)も成り立てば、比例(線形変換) を表すという事で理解しました。 この度は本当にありがとう御座いましたm(_ _)m また、別質問で大変恐縮なのですが、アフィン写像の始域と終域とは何を表しているのか ご教示頂けるとありがたいです。 URL:http://okwave.jp/qa/q6009380.html 以上、よろしくお願い致します。

関連するQ&A

  • 線形変換の定義

    線形変換の定義 前回の質問で線形変換とアフィン変換について質問させて頂きました。 前回の質問内容:http://okwave.jp/qa/q5973471.html 線形変換とアフィン変換については理解する事が出来ました。 ご回答下さった方本当にありがとうございます。 線形変換の定義を幾つか示して頂いたのですが、 線型変換の定義: [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 線型変換の定義: [1’] [1']?体 K 上のベクトル空間 V 上の変換 f で、?x,y∈V, a∈K について常に?f(x+y) = f(x) + f(y),? f(ax) = a f(x) が成り立つもの。 線形変換の定義:[1''] ?体 K 上のベクトル空間 V 上の変換 f で、?x,y∈V, a,b∈K について a+b=1 のとき?f(ax + by) = a f(x) + b f(y),? f(ax) = a f(x) が成り立つもの。 定義[1] ⇔ [1'] ⇔ [1''] が同値であることはどのように示せば良いのでしょうか? また、定義[1'']におけるa+b=1とは具体的に何を示しているのでしょうか? ご回答よろしくお願い致します。

  • 線形変換の定義について

    線形変換の定義について 線形変換の定義 [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [3] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 がすべて同値であることを示したいのですが、どのようにすればよいでしょうか?

  • 線形変換の定義 証明

    線形変換の定義 証明 以前ご回答頂き理解したつもりだったのですが・・・ 実際に自分で証明を試みましたが出来ませんでした。 理解出来ていなかったので再々度質問させて頂きます。 重複質問で申し訳ないですm(_ _)m 線形変換の定義 [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [3] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 *****以下質問内容***** [1]と[3]が同値であることの証明は理解できたのですが、 [1]と[2]が同値であることを証明できません。 [1]と[2]が同値であることの証明 [1]の定義に従い、[2]を示す。 ・x,y∈V,a,b∈Kにおいてa=b=1∈Kとおくと  x,y∈V,1∈K→f(ax+by)=f(1*x+1*y)=1*f(x)+1*f(y)=f(x)+f(y)=f(x+y) ・x,y∈V,a,b∈Kにおいてy=0∈V,b=0∈Kとおくと  x,0∈V,a,0∈K→f(ax+by)=f(ax+0*0)=f(ax)+0*f(0)=f(ax)=af(x) [2]の定義に従い、[1]を示す。 ・x,y∈V,a∈Kにおいて  f(x+y)がf(ax+by)=af(x)+bf(y)となる事が示せません・・・  そもそも、a∈Kでbはどこからでてくるのでしょうか? [1]→[2],[2]→[1]であるなら、[1]と[2]は同値であると示せると 思うのですが、[2]→[1]はどのようにすれば示せるのでしょうか? お手数ですが、ご回答よろしくお願い致します。

  • 形変換 アフィン変換 

    形変換 アフィン変換  前回同様の内容で質問させて頂きました。 不明な点がいくつかありますので改めて質問させて頂きます。 前回の質問内容:http://okwave.jp/qa/q5957715.html アフィン変換 ⊃ 線型変換 であるとご回答頂いたのですが、これはアフィン変換は 線形変換を含むという認識で良いでしょうか? 線形変換はアフィン変換の部分集合だと理解したのですが間違いでしょうか? また、線形変換及びアフィン変換の定義に関して ・線型変換の定義: [1]  体 K 上のベクトル空間 V 上の変換 f で、  x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 ・アフィン変換の定義: [2]  体 K 上のベクトル空間 V 上の変換 f で、  x,y∈V, a,b∈K, について a+b = 1 のときは f(ax + by) = a f(x) + b f(y)  が成り立つもの。 とご教示頂きました。 定義[1],[2]について考えると、 [1]が成り立てば、[2]は成り立つと思います。 [1]はa+b=1によらず、f(ax+by)=af(x)+bf(y)が成り立ちますから。 翻って、[1]ならば[2]が成り立つと言うことは線形変換がアフィン変換を含むと 言う事になりませんか?この点で混乱しています・・・ ご回答よろしくお願い致します。

  • 線形写像と線形変換

    線形写像と線形変換 V , W をK上のベクトル空間とする。このときベクトル空間Vからベクトル空間Wへの写像fが、 Vの任意の要素x,yに対してf(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fをVからWへの線形写像と言う。 これが線形写像の定義です。 別の記載では、R^n,R^mをk上のベクトル空間とする。このときベクトル空間R^n からベクトル空間R^m への写像f がR^nの任意の要素x,yに対して f(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fを R^n からR^m への線形写像という。 ここで、テキストにはfがVからV自身への線形写像である時fを線形変換と呼ぶと記載されているのですが、 「VからV自身への線形写像」のイメージがあまりつきません・・・ 次元が同じ場合であれば線形変換?と思ったのですが間違いでしょうか? よろしくお願い致します。

  • ユークリッド空間 ユークリッド変換

    ユークリッド空間とはユークリッド変換の対象となる空間であると認識 しています。 ユークリッド変換は、回転、鏡映、平行移動です。 ユークリッド変換は、直交変換+平行移動と説明されたりしますが、 直交変換とはなんでしょうか?直交行列と関係あるのでしょうか? 直交行列は、ある行列Aの転置行列がAの逆行列と等しい行列で ある事は理解できています。 回転行列は直交行列の一つだと認識しています。 線形変換(回転、鏡映、拡大・縮小、剪断)のなかで直交変換に あたるものは回転以外になにがありますでしょうか?鏡映も回転と ほとんど同意なので含まれると考えています。 ユークリッド変換の数学的な定義は調べたのですがわかりませんでした。 ユークリッド変換の数学的な定義を以下のように教えて頂けませんか? ちなみに、 線形変換の定義は、 K上の線形空間V上の変換fで、x,y∈V,a,b∈Kについて常に、 f(ax+by)=af(x)+bf(y)が成り立つもの。 アフィン変換の定義は、 K上のアフィン空間W(線形空間を含む)上の変換fで、x,y∈W,a,b∈Kについてa+b=1のとき、 f(ax+by)=af(x)+bf(y)が成り立たちかつ全単射であるもの。 よく私たちが生活している空間を3次元ユークリッド空間などと呼んだりしますが、 これはなぜでしょうか?ユークリッド空間では、回転と鏡映(対称移動)、平行移動が 定義された空間で私たちが生活している空間とは無関係な気がします・・・ 私たちが生活している空間には、~空間といったような名称があるのですか? 長々と失礼しました。 質問を整理させて頂きます。以下に質問順に番号をふりました。 (1)直交変換とはなんでしょうか? (2)線形変換の中で直交変換であるものはなんでしょうか? (3)ユークリッド変換の定義を教えて貰えないでしょうか? (4)ユークリッド空間と私たちが日常生活している空間は関係あるのでしょうか? 以上、ご回答よろしくお願い致します。

  • 線形変換にて自己随伴とは?

    VをF上の線形空間とする。 [随伴写像とは] A∈L(V)({=f∈Map(V,V);f is linear}),∃1C∈L(V')(V'はF線形空間Vの双対空 間);∀(x,y)∈V×V',y(Ax)=(Cy)(x)(∈F) (i.e. [Ax,y]=[x,Cy]) (⇔def) C をAのadjoint(随伴写像)と言い、adjA:=Cと示す。 (∃1は"一意的に存在する"を意味する) が随伴写像の定義だと思います。 と随伴写像の定義までわかりましたが自己随伴変換(self-adjoint transformation)の定義が分かりません。 上記で特にA=Cの場合(つまりadjA=Aの場合),CはAの"自己随伴である" と言ったりするのでしょうか? 自己随伴の定義をご教示ください。

  • 線形変換について

    [1] 変数xに関するn次以下の実多項式のなすベクトル空間をVnとする。実数a,bに対して、写像F_a,b;Vn→Vnを (F_a,b(f))(x)=f(ax+b) (f∈Vn) で定める。 (1)ベクトル空間Vnの次元を求めよ。 (2)写像F_a,bはVnの線形変換であることを示せ。 という広島大院試の問題(一部)なんですが、抽象的な問題が苦手でさっぱりです... (1)はお手あげで、(2)は線形写像とか線形変換を示すのだから、F(f1+f2)=F(f1)+F(f2)などを示せば良いと思うんですが、具体的な数や基底がどこにも書いてないのにどうすれば示せるのでしょうか?参考書の例題などは全て数が与えられているので計算できるのですがこういう抽象的なものになると本当に止まってしまいます。 アドバイスよろしくお願いします!

  • [-∞,+∞]は線形空間である証明で

    [-∞,+∞]が実数体R上の線形空間となる事を下記のように示しました。 スカラー倍f:RX[-∞,+∞]→[-∞,+∞]をf(a,x):=ax x∈Rの時、±∞ a>0且つx=±∞(復号同順)の時、\mp ∞ a<0且つx=±∞(復号同順)の時(但し\mpはマイナスプラスの意味)、 0 a=0の時。 と定義すれば線形空間の定義 f(a,x+y)=f(a,x)+f(a,y), f(a+b,x)=f(a,x)+f(b,x), f(ab,x)=af(b,x), f(1x)=f(x) for∀a,b∈R,x,y∈[-∞,+∞]. を満たしますよね? このfの定義で大丈夫でしょうか?

  • 線形変換

    行列AをA= (2,-1) (1,4) で定義する。 行列Aによって表されるxy平面上の線形変換をfとする。直線y=ax上の任意の点のf による像が同じ直線y=ax上にあるようなaの値を求めよ。 という問題で、y=axはベクトルを使うと (1) (a) と表せるから、これの左側にAをかけて、 (2-a) (1+4a) となり、(2-a):(1+4a)=1:a という比例式から (a+1)^2=0 ∴a=-1 が出てきました。このような解き方でいいでしょうか?