• ベストアンサー
  • すぐに回答を!

微分方程式の一般解の求め方が分からないので教えてください。

微分方程式の一般解の求め方が分からないので教えてください。 1.(1+x^2)y´+2x(1+y)=0 2.2yy´+logx+1=0 3.2x+y+(x-2y)y´=0

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数913
  • ありがとう数6

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.4

1. (1+x^2)y´+2x(1+y)=0 これを移項して変形すると (1+x^2)y´=-2x(1+y) y´/(1+y)=-2x/(1+x^2) 変形すると dy/(1+y)=[-2x/(1+x^2)]dx 積分定数を C として,これを積分すると ∫[1/(1+y)]dy=∫[-2x/(1+x^2)]dx +C この積分を計算すると log(1+y)=-log(1+x^2) +C log(1+y)+log(1+x^2)=C log[(1+y)(1+x^2)]=C (1+y)(1+x^2)=exp(C) ・・・ 1の一般解. 2. 2yy´+logx+1=0 この式を変形すると (y^2)´+logx+1=0 (y^2)´=-logx -1 積分定数を C として,これを積分すると y^2=∫(-logx -1)dx+C y^2=-1/x -x+C ・・・ 2の一般解. 3. 2x+y+(x-2y)y´=0 この式を変形すると (xy+x^2-y^2)´=0 積分定数を C として,これを積分すると xy+x^2-y^2=C ・・・・・ 3の一般解 以上です.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

詳しく教えていただきありがとうございます。

関連するQ&A

  • 微分方程式

    次の3つ微分方程式はどのように解けばよいのですか? 出来ればそれぞれの微分方程式の名前も教えてください (1)y'=(1+x+3y)^2 (2)(x^2+y^2-a)(x+yy')=2xy(y-xy') (3)2xy^2y'+y+y^3=2(1+y^2)y'

  • 微分方程式

    微分方程式 dy/dx-2xy=2xy~2 について。 (1)z=1/yとするとき、z=z(x)が満たす微分方程式を求めよ (2)(1)で求めたzに対する微分方程式の一般解を求めよ (3)yの一般解および特殊解を求めよ という問題があります。 これは教科書にあるような、微分方程式の公式を用いて解くのでしょうか よく分からないので詳しく教えてください。

  • 微分方程式

    微分方程式の勉強をしているのですが、 本の微分方程式を解く例題で y''-2y'+y=xe^x 特性方程式s^2-2s+1=0は2重解s=1をもつ。これより補助方程式の一般解は y=e^x(Ax+B) である。 与方程式の右辺を微分して生ずる関数は、xe^x,e^xであるが、これらは 上の一般解に含まれている。このような場合特殊解を求めるために、xe^xに特性方程式の解1の重複度2だけxをかけて、 y1=ax^3e^xとおくと y1'=a(x^3*e^x+3x^2*e^x),y1''=a(x^3*e^x+6x^2*e^x+6xe^x) これらを与方程式に代入すると6axe^x=xe^xよりa=1/6 よってy=e^x(Ax+B+x^3/6) とあるのですが、上文にある重複度っていうのがわかりません。 例えば、特性方程式の解が2±i(虚数解)で、これより 補助方程式の一般解はy=e^(2x)(Asinx+Bcosx) 与方程式の右辺がe^(2x)のときの重複度はどうやって考えれば いいでしょうか?

その他の回答 (3)

  • 回答No.3

ヒントです。 (1) y'/(1+y)=-(1+x^2)'/(1+x^2) (2) (y^2)'=-(logx+1) (3) (xy+x^2-y^2)'=0

共感・感謝の気持ちを伝えよう!

  • 回答No.2
noname#113983
noname#113983

2なんか、2yy'=(y^2)'に気付けよ!!

共感・感謝の気持ちを伝えよう!

  • 回答No.1
noname#185706
noname#185706

いずれも変数分離型です。 3. は y = x t で変数を変えるとわかりやすいでしょう。 あとは御自分でどうぞ。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分方程式の解を教えてください

    d^2x(t)/dt^2 + 4dx(t)/dt + 3x(t) = 12 この微分方程式の一般解は何になるのでしょうか? また3x(t)が4x(t)だとどうなりますか? よろしければ教えてください。

  • 4階の微分方程式の解き方を教えてください!

    問題で与えられる微分方程式は画像として添付しました。 (1) f(x)=0 のとき、この微分方程式の一般解 (2) f(x)=sinx のとき、この微分方程式の一般解 それぞれの求め方を教えていただけませんか? 自分で計算した結果 (1)y=(C1x+C2)cos2x+(C1x+C2)sin2x (A,Bは任意定数)となりました。 間違っているでしょうか?詳しい一般解の導き方を教えてください (2)特殊解をどのようにおけばいいのか分かりません  おき方と解法を教えていただきたいです

  • 微分方程式

    次の、微分方程式の一般解を求めよ。 (1-4x-3y^2+12xy^2)dy/dx=4 この解き方教えてください。 答えは y-(2/3)y^2=-log(x-1/4)+C です

  • 微分方程式の一般解について

    微分方程式の一般解についてなんですが、特性解が重解や2つあるときはわかるのですが特性解が1つのときの一般解の求め方がわかりません。 今、yの二階微分をA、一階微分をBとします。 例えば4D-12B+9y=0という微分方程式があったとして、これの特性解は3/2です。 どうやって求めたらいいのでしょう?

  • 微分方程式について

    微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします

  • 再び微分方程式の質問(2)です。

    全くわからず手が付けられません。ご回答よろしくお願いいたします。 微分方程式 y’+2y(2乗)-2y=0 について問1~問3について答えよ。  問1 問題の微分方程式は変数分離型である。変数を分離した積分として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) ∫1/y(y-1)dy=∫2dx  (2) ∫1/y(1-y)dy=∫2dx  (3) ∫1/y(y+1)dy=∫2dx  (4) ∫1/y(y-1)dy=∫1/2dx  (5) (1)~(4)に正解はない。  問2 問題の微分方程式の解として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) 一般解y=1±√1-Ce(2x乗)/2 (Cは任意定数)  (2) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)  (3) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=1  (4) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=0  (5) (1)~(4)に正解はない。  問3 問題の微分方程式の解y=y(x)で、y(0)=1/2をみたすものがy(x)=2/3となるxとして次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。  (1) 1/2log2  (2) 3/2  (3) log6  (4) 1/6  (5) (1)~(4)に正解はない。  以上、よろしくお願いいたします。

  • 微分方程式

    次の同時形微分方程式の一般解をもとめなさい。 dy/dx=(2x-y)/(x+y) 途中のxu'=(2-2u-u^2)/(1+u)まできたのですが そのあとが混乱してしまします。 どなたそのあとの導き方かお願いしますm(__)m

  • 微分方程式が解けません

    次の問題がどうしても解けません。 解き方のヒントを教えていただけないでしょうか。 また、今まで「特解」は非斉次微分方程式にしか出てこないと思っていたのですが、 この場合の「特解」とは何のことなのでしょうか。 特解y=xをもつ下記の微分方程式の一般解を求めよ。 (x^2 - 1)y'' - 2xy' + 2y = 0

  • 微分方程式

    次の微分方程式を解けという問題がわかりません。 y''+4y=sin2x 特性方程式s^2+4=0よりs=±2i(虚数解) 補助方程式の一般解はy=Asin2x+Bcos2x 与方程式の右辺を微分して生じる関数は2sin2x,2cos2xであるが、 これらは上の一般解に含まれている。重複度は2なので、 特殊解を求めるために、 y1=ax^2*sin2xとおく y1'=2a(xsin2x+x^2cos2x) y1''=2a(sin2x+4xcos2x-2x^2sin2x) これらを与方程式に代入すると 2asin2x+8axcos2x-4ax^2sin2x+4ax^2sin2x=sin2x となってしまって解けませんでした。どこを直せばいいでしょうか?

  • 微分方程式が分かりません!

    宿題が出て困っています 教えていただけないでしょうか? ・次の微分方程式解け。(特殊解と一般解を求めよ) (1)2y''-6y'-8y=-2cos2x+sin2x (2)4y''-16y'+16y=3x+1 (3)y''-8y'+18y=e^(-4x) ※(1)、(2)、(3)は問題番号です... 一応自分で説いたのですが、あってるか不安なのでお願いします。 途中式も理解したいので書いてくれたらありがたいです。 お手数ですがお願いします。

専門家に質問してみよう