• ベストアンサー
  • 困ってます

微分方程式の一般解の曲線族

微分方程式の一般解の曲線族 微分方程式をといて、曲線族を書くという問題が手元にあるのですが、(宿題ではありません) 方程式が解けても曲線族がかけません。 y=exp(-ax+C) ならまだ書けるのですが、 1.(y-2x)^2(y+x)=C 2.(y-x)^3=C(y+x) 3.y^2-xy+x^2=C (Cは積分定数) とかさっぱりです。 他にもあるので、他のが自力で書けるように詳しい説明お願いします。

noname#150296

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数938
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

陰関数のプロットですね。 Cをパラメータにしてxを一定の刻みで値を与えて、その時のyをニュートン法で求めて表を作り点(x,y)をプロットし滑らかな曲線で結べば曲線群が描けます。 計算機のプログラムやMatlab、Mathematica,Mapleなどで描けば簡単ですが、手計算ではかなり手間がかかるでしょう。 陰関数をプロットできるグラフィックソフトを使えば比較的簡単に曲線群をプロットできます。たとえば参照URLのGRAPESの陰関数プロット機能と残像機能を使えばいいでしょう。 GRAPESを使って1だけ 曲線群をCをパラメータC=-100,-32,-16,-8,-2(ここまで赤線),0(黒線),2,8,16,32,100(灰色)としてプロットして見ました。 同様にできますので2,3はやってみて下さい。 同様の他の曲線群も描けますのでGRAPES(無料ソフト)をダウンロードしてインストールして使って見てください。使いこなせば重宝しますよ。

参考URL:
http://www.osaka-kyoiku.ac.jp/~tomodak/grapes/index.html

共感・感謝の気持ちを伝えよう!

質問者からのお礼

こんなソフトあるんですね。 とりあえず大体のグラフを手計算で出したいのですが、 どうすればいいですか?? ありがとうございました

関連するQ&A

  • 微分方程式の解について

    下記の問題を解く指針がわかりません。 ------------------------------------------------- f(x),g(x)がともに微分方程式 y''+y=tan(x) の解であるとき、 ア~エのうち f(x)-g(x) として妥当でないものはどれか。 ア.3e^(-x) イ.(√3)cos(2x) ウ.e^(ix) エ.2sin(x+(π/3)) ------------------------------------------------- 斉次形の解が、A,Bを積分定数として Ae^(ix)+Be^(-ix) となり、定数変化法を用いようとしましたが、 うまくいきませんでした。 微分方程式は解かなくてもよいのでしょうか? どなたかご教授下さい。

  • 微分方程式

    xy'=y+√(x^2+y^2)という微分方程式を誰か解いてください。 たぶん変数分離形で解くと思うのですがどうしても答えと合わないんですよ。誰かお願いします。 ちなみに回答は y=(C^2*x^2-1)/2C  (C:積分定数) です。

  • 未定係数法は一階の線形微分方程式にも使えるのでしょうか? 

    未定係数法は一階の線形微分方程式にも使えるのでしょうか? 一階の線形微分方程式の解き方は dy/dt + p(t)y = g(t) のとき e^∫p(t)dt を両辺にかけて そのあとで両辺を積分してyについて解く と習いました。 そして、未定係数法は2階の線形微分方程式を解く方法の一つとして、 習いました。 ここで疑問に思ったのが、 この未定係数法は一階の線形微分方程式にも使えるのでしょうか? だとしたら下のような手順でよいのでしょうか? 同次式: dy/dt + p(t)y = 0 の一般解を求める (積分定数が残る) 非同次式: dy/dt + p(t)y = g(t) の特殊解を求める (積分定数はない) yの一般解 = 同次式の一般解 + 特殊解 よろしくお願いします。

  • 微分方程式の一般解

    単刀直入に質問いたします。 du/dt=(1-u)u 簡単なようですが上の式の一般解が分かりません。 変数分離形だと思い解いてみたのですが、変数を分離して両辺積分してまとめると、 log|u/(1-u)|+C=t となったのですが、むりやりu=の形に直すとあまりいい形になりません。 この問題の後に、 (2)u(0)=aのもとで上記方程式を解け。但しaを実定数とする。 (3)(2)で求めた解がt≧0全体で定義されるためのaの満たすべき条件をもとめよ。 という問題が続くので、一般解をできるだけきれいな形で出しておきたいと思い質問いたしました。 ちなみに自分で無理やり解いた解は、 u=(±exp(t)+C)/(±exp(t)+C+1) (Cは積分定数) です。 間違っている、これでよい等どんなことでも良いので助言をお願いします。

  • 微分方程式の問題

    下の微分方程式について教えてください。 yy'=x*exp(x^2+y^2) 但し、x=0の時y=0 これを解き、グラフを描け。という問題なんですけど・・・ 方程式は次のように解いたんですけど {y*exp(-y^2)}dy={x*exp(x^2)}dx y^2=log{1/(c-expx^2)} cは積分定数 この答えもあまり自信がないのですが・・・もし間違っていたらご指摘お願いします。 この後グラフを描きたいんですけど、どのようなグラフになるのでしょうか?

  • 微分方程式の問題です!!

    微分方程式の問題です。y'=(yの二乗-1)tan(x)という微分方程式を解きたいのですが、積分定数Cの使い方に困っています。下は解答なのですが、 (1) y'=(yの二乗-1)tan(x) (2) 1/(yの二乗-1)(dy/dx)=tan(x) (3) (1/2)log{(y-1)/(y+1)}=-log(cos(x))+c (4) (y-1)/(y+1)=1/(C×cos(x)の二乗) (5) y=(C×cos(x)の二乗+1)/(C×cos(x)の二乗-1) とあるのですが、(3)から(4)になるのがよく分かりません。積分定数Cの位置がおかしくないですか? (y-1)/(y+1)=C/(cos(x)の二乗)だと思う(というよりどっちでもいいと思う)のですが、これではダメでしょうか?回答よろしくお願いします。

  • 微分方程式の一般解の求め方で・・・・

    次の微分方程式の一般解を求めよという問題です。 xtan(y/x) - y + xy' = 0 これってどうすればいいのでしょうか? u=y/xとおいたのですがとけませんでした。教えてください。

  • 微分方程式

    解きたい微分方程式があります。 x'=exp(x/t)+x/t これを解くということは一般解と特異解を求めることですよね。 両辺をtで積分して x=-exp(x/t)+logt このあとどう操作すればよいかわかりません。 どなたか教えて頂けませんでしょうか。 お願いします。

  • 線形でない2階微分方程式

    y"=√(1-(y')^2)←括弧内はすべてルートの中身 以上の微分方程式の一般解の求め方を教えてください。 一応自分で参考書を見ながら解いてはみたのですが、答えが y=-cos(x+C1)+C2 (C1,C2は積分定数) とcosxがなぜ出るのかわかりませんでした。公式か何かあるのでしょうか。 習ったばかりですぐに試験のため、出来る限りでいいので回答をよろしくお願いします。

  • 2階微分方程式の問題について

    下記の微分方程式についての質問です。 k * (d^2 y/dx^2) = a * y^2 …(1) ここで、k, a は定数、(d^2 y/dx^2)はyの2階微分(つまりy'')を表しています。また、* は積を表しています。 この2階微分方程式の一般解を求めたいのですが、詰まっています。 私のやり方は、まず(d^2 y/dx^2)=y'' として k * y'' = a * y^2 …(2) (2)の両辺に2y'をかけて k*y''*2y' = a * y^2 * 2y' これより ( k * (y')^2 )' = ( 2a* (y^3/3) )' 両辺を積分して k * (y')^2 = (2a/3) * y^3 + C1 …(3) (ただしC1は積分定数) このあと、変数分離すればとけるはずなのですが、 その先が詰まっています。 C1があるせいで積分できないのです。 これは一般解が求められないのでしょうか? また、初期条件は x=0でy=y0、x→∞でy=0 なので、x→∞でy'=0 と考えて、(3)よりC1=0 として考えると、 うまく変数分離できて y^(-3/2) dy = √(2a/3k) * dx ∴ y^(-1/2) = (-1/2) * √(2a/3k) *x + C2 (C2は積分定数) ∴ y = ((-1/2) * √(2a/3k) *x + C2)^(-2) …(4) 初期条件より C2 = y0^(-1/2) という感じで解いていったのですが、 どうやら解答は y = p * (x + q)^(-2) ただし、p = 6k/a, q = (a*y0/6k)^(-1/2) となるようです。。。 何度見直してもこうならないのですが、 私の計算ミスでしょうか。。。? (i) 式(3)の一般解 (ii) 式(4)が合っているか に関して、どなたか知恵をお貸しいただければ幸いです。 数式見づらくて恐縮です。