• ベストアンサー
  • すぐに回答を!

微分方程式の一般解について

微分方程式の一般解についてなんですが、特性解が重解や2つあるときはわかるのですが特性解が1つのときの一般解の求め方がわかりません。 今、yの二階微分をA、一階微分をBとします。 例えば4D-12B+9y=0という微分方程式があったとして、これの特性解は3/2です。 どうやって求めたらいいのでしょう?

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数378
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • ka1234
  • ベストアンサー率51% (42/82)

こんにちは。 >特性解は3/2です。どうやって求めたらいいのでしょう? 特性方程式が重解 x=α を持つ時は、e^(αx)に対して、xe^(αx)が線型独立な 特殊解になります。 従って、y=C1e^(αx)+C2xe^(αx) (C1, C2は定数) となります。 この公式を用いると、(答え)y=C1e^(3/2)x+C2xe^(3/2)x >特性解が重解や2つあるときはわかるのですが 特性解が1つのときの一般解の求め方がわかりません。 この部分は一部意味不明です。特性解が1つというのは、この場合、 重解だと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

重解の意味を勘違いしてました^^;ありがとうございます。

関連するQ&A

  • 微分方程式

    問題を解いていて少し疑問に思ったので質問させてください。 u=u(t)を未知関数として A(du/dt) + B*u = E*sin(ωt) について、一般解を求め、その後初期条件u(0)=u0のもとで解け。 ただし、A,B,E,ωは正定数とする。 上記のような問題なんですけど、これは一階微分方程式ですよね? 一般解は、二階微分方程式では特性方程式によって求めた基本解と、未定係数法で求めた特殊解を重ね合わせて作るという印象があります。 このような一階微分方程式の場合はどのように解けばいいですか? 二階の時と同じように解いてよいならば、特性方程式の解から基本解を作る時など、二階微分方程式の時と同じようにやってよいものか疑問です。 特殊解も未定係数法もつかってよいのでしょうか。 詳しい方いましたら教えてください。

  • 微分方程式の問題で

    微分方程式の問題で 「a,bが任意定数のとき、次式が一般解になるような最小階数の微分方程式を示せ。  y = ax^2 + 2bx」 の答えがわかりません。 答えは一階の微分方程式で (dy/dx) + y = ax^2 + 2(a+b)x +2b となるのか 二階での微分方程式で x^2 * y" - 2xy' +2y = 0 となるのかで迷っていて、 一階の微分方程式が特殊解なのか一般解なのかの判断がつかないと言う状況です。 というのも教科書には 「限定状況を与えなければn階の微分方程式にはn個の任意定数を含む」 とあるのですがこの限定条件がわからなくて判断がつきません。 どちらが正しいのでしょうか?

  • 微分方程式

    二階の微分方程式について質問があります。 例えば、 x''+x'+2x=0 これを解くとするじゃないですか。 すると、特性方程式の根は-1±i√7となるので、 一般解はx=C(exp-y)cos(√7)y+c(exp-y)sin(√7)y となりますよね? では、 x''+x'+2x=α と=0ではなく=定数 と式が与えられているときはどのようにとけば良いのでしょうか? =0という問題は色々あるのですが、=定数というのはまだ見たことがありません。 また特殊解はどのように求めますか?

その他の回答 (2)

  • 回答No.3

2階線形同次微分方程式 ay"+by'+c=0 の補助方程式(特性方程式)は、at^2+bt+c=0 で、特性方程式の解 α、β は α={-b+√(b^2-4ac)}/2a、 β={-b-√(b^2-4ac)}/2a 2階線形同次微分方程式の一般解 y は、α、β の形により、次の様になる。 (I)α、β が共に相異なる実数解のとき、y=C1*e^αx+C2*e^βx (II)α、β が α=β で、2重解のとき、y=e^αx(C1*x+C2) (III)α、β が共役複素解のとき、p=-b/2a、q=√(4ac-b^2)/2a として、y=e^px(C1*cosqx+C2*sinqx) です。 よって、4y"-12y'+9y=0 の特性方程式は、4t^2-12t+9=0 で、 (II)の場合になり、 α=β=3/2、  ∴ 一般解は、y=e^(3/2)x (C1*x+C2) です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すごくわかりやすいです。ありがとうございます^^

  • 回答No.1

特性解が1つのときというのは、つまり重解のときではないでしょうか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

そうでした^^;ありがとうございます。

関連するQ&A

  • 微分方程式の一般解

    y'+(e^x)y=3e^x という微分方程式があるんですけど 一般解を求めたいんですけど 求めてみたら ∫(3e^x)・e^(e^x)dx+c)e^(-e^x)になりました これってどうやって解くのでしょうか?

  • 微分方程式

    第1問 dy   y~2-x~2 --=--------- (ヒントz=y/xと置換しなさい) dx    2xy 第2問 一階線形微分方程式  dy --+ycosx=sinx×cosx---(1)がある dx 1、この方程式の同次の微分方程式を解きなさい 2、定数変化法により、この微分方程式(1)の特解を求めなさい。 また、その時の一般解を求めなさい

  • 微分方程式の一般解を求めたいです。

    dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 ********************************************* これはf(x) = ad(x) - bc(x) g(x) = -d(x) として答えがでました。 ********************************************* (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 dz/dx = -2z/x -x という式になると思うんですけど一般解をどう導き出していいのか分かりません。よろしくお願いします。

  • 微分方程式

    微分方程式 dy/dx-2xy=2xy~2 について。 (1)z=1/yとするとき、z=z(x)が満たす微分方程式を求めよ (2)(1)で求めたzに対する微分方程式の一般解を求めよ (3)yの一般解および特殊解を求めよ という問題があります。 これは教科書にあるような、微分方程式の公式を用いて解くのでしょうか よく分からないので詳しく教えてください。

  • 微分方程式

    微分方程式の勉強をしているのですが、 本の微分方程式を解く例題で y''-2y'+y=xe^x 特性方程式s^2-2s+1=0は2重解s=1をもつ。これより補助方程式の一般解は y=e^x(Ax+B) である。 与方程式の右辺を微分して生ずる関数は、xe^x,e^xであるが、これらは 上の一般解に含まれている。このような場合特殊解を求めるために、xe^xに特性方程式の解1の重複度2だけxをかけて、 y1=ax^3e^xとおくと y1'=a(x^3*e^x+3x^2*e^x),y1''=a(x^3*e^x+6x^2*e^x+6xe^x) これらを与方程式に代入すると6axe^x=xe^xよりa=1/6 よってy=e^x(Ax+B+x^3/6) とあるのですが、上文にある重複度っていうのがわかりません。 例えば、特性方程式の解が2±i(虚数解)で、これより 補助方程式の一般解はy=e^(2x)(Asinx+Bcosx) 与方程式の右辺がe^(2x)のときの重複度はどうやって考えれば いいでしょうか?

  • 微分方程式の一般解の求め方で・・・・

    次の微分方程式の一般解を求めよという問題です。 xtan(y/x) - y + xy' = 0 これってどうすればいいのでしょうか? u=y/xとおいたのですがとけませんでした。教えてください。

  • 微分方程式の一般解の求め方が分からないので教えてください。

    微分方程式の一般解の求め方が分からないので教えてください。 1.(1+x^2)y´+2x(1+y)=0 2.2yy´+logx+1=0 3.2x+y+(x-2y)y´=0

  • 微分方程式について

    y''-2y'+y=e^xについて 1 y=(e^x)vと置くとき、v=v(x)を満たす微分方程式を求めよ 2 1で求めたvに対する微分方程式の一般解、およびyの一般解を求めよ という問題が出されたんですが、どの本を見ても「一般解をもとめよ」 「特殊解を求めよ」という問題ばかりで、上記の問題の解き方が全く分かりません。よろしければご指導よろしくお願いします。

  • 2階微分方程式の解き方

    2階微分方程式 y'' + 2y = sin 2x の一般解を求めよ。 (Ans. y = A cos √2 x + B sin √2 x - (1/2)sin 2x ) 斉次微分方程式 y'' + 2y = 0の一般解は 特性方程式より u = A cos √2 x + B sin √2 x と求まりましたが 1つの解(y1とする)をどのように予想するかが分かりません。

  • 非同次線形微分方程式の解

    非同次線形微分方程式の解は、 「同次線形微分方程式の一般解+特殊解」 だと思うのですが、このとき、 「【同次線形微分方程式の一般解】は、非同次線形微分方程式の解である。」と言えるのでしょうか?

専門家に質問してみよう