• ベストアンサー

(1)2つの上三角行列A、Bの積ABは上三角行列になることを証明せよ。

(1)2つの上三角行列A、Bの積ABは上三角行列になることを証明せよ。 (2)2つの上三角行列A、Bの積ABの行列式|AB|は|A||B|に等しいことを証明せよ。 明日提出の宿題で困ってるので教えてもらえませんか?

質問者が選んだベストアンサー

  • ベストアンサー
  • koko_u_u
  • ベストアンサー率18% (216/1139)
回答No.1

計算するだけなので、困るような問題ではありません。

関連するQ&A

  • 上三角行列同士をかけたときの積も上三角行列となることを示すには?

    正方行列AとBがともに上三角行列であるとき、積ABもまた上三角行列となることを示せ。 という問題がわかりません。 自分で解こうとしましたが、以下のような状態で、証明できていません(^_^;) 行列式|A|はAの対角成分を掛け合わせたもの。同様に行列式|B|はBの対角成分を掛け合わせたものになっている。また、|AB|=|A||B|より、積ABの行列式はAとBの全ての対角成分を掛け合わせたものとなる。よって、|AB|はAとBの対角成分のみから構成されているので、積ABもまた上三角行列である???

  • 正則行列、ユニタリ行列、上三角行列、一意性の証明

    定理 任意のn次正則行列Aはユニタリ行列Uと,対角成分が正の実数であるような上三角行列(下三角でもいい)Tの積UT(TUでもいい)として一意的に表わされる 1.表示可能性の証明←完了 2.一意性の証明←写真はここ 下から3行目以降がわか りません B*=B^(-1)よりBは上三角かつ下三角? その対角成分b(i,i)はb(i,i)^2=1?

  • 行列AとBが対角化可能なとき、ABは?

    問 行列A,Bがそれぞれ対角化可能なとき、 行列の積ABは必ず対角化可能か? *** 上記の問題がわかりません。 恐らく答えは、必ずしも対角化可能ではないと思うのですが、 例を挙げて頂けますでしょうか? 必ず対角化可能、となる場合は証明をお願い致します。

  • 転置行列 証明 行列の積

    転置行列の証明について疑問点があるので 質問させて頂きます。 t(AB)=t(B)t(A) の証明について。以下に示します。 行列 A の (i,j) 成分を A[i,j] と書くことにします。 行列Bも同様。 (t(AB))[i,j] = (AB)[j,i] = Σ A[j,k] B[k,i] = Σ (tA)[k,j] (tB)[i,k]  …(1) = Σ (tB)[i,k] (tA)[k,j]  …(2) = ((tB)(tA))[i,j] よって、 t(AB) = (tB)(tA) (1)についてよくわかりません。 行列の積は、 (l,m)行列と(m,n)行列の積は(l,n)行列と定義されますが (1)は(m,l)行列と(n,m)行列の積を計算することに ならないのでしょうか? (m,l)行列と(n,m)行列の積は定義されないので等式でつないでは いけないのでは?と考えた次第です。 以上、ご指摘、ご回答よろしくお願い致します。

  • Aを可逆なnn上三角行列とする。Aの逆行列も上三角行列となることを

    Aを可逆なnn上三角行列とする。Aの逆行列も上三角行列となることを (1)逆行列の公式から証明 (2)可逆なnn行列はnn単位行列と行同値であることを使って証明 の2通りのやり方を教えてください。

  • 積と逆行列

    行列の証明問題です。よろしくお願いいたします。 問題は、 次のことを証明せよ A,Bが逆行列をもつとき、ABも逆行列をもち、(AB)^(-1)= B^(-1) A^(-1) です。 解答は、 (AB)(B^(-1) A^(-1))=AB B^(-1) A^(-1)=(AEA)^(-1)= AA^(-1)=E (B^(-1) A^(-1))(AB)=B^(-1) A^(-1)AB=(B)^(-1)EB=B^(-1)B=E よって、ABは逆行列をもち、(AB)^(-1)= B^(-1) A^(-1) (証明終) となっています。 ですが、私はどうしてこの二つで証明できるのかわかりません。 私は、(AB) (AB)^(-1)=E=(AB)^(-1) (AB)を証明すべきだと思います。 そこで質問なのですが、どうして解答のような方法で、証明したことになるのでしょうか? よろしくお願いいたします。

  • 転置行列 証明

    転置行列 証明 t(AB)=tBtAの証明について 知恵袋にあった証明を引用させて頂きます。 行列の積が定義できることを前提に、各行列の(i,j)成分を次のようにおきます。 A : a_ij B : b_ij tA : a_ij(t) = a_ji ____ (1) tB : b_ij(t) = b_ji ____ (2) 行列の積の定義から、ABの(i,j)成分は Σ a_ik*b_kj すると、t(AB)の(i,j)成分は Σ a_jk*b_ki = Σ b_ki*a_jk ____ 積の交換 = Σ b_ik(t)*a_kj(t) ____ (1)と(2)から明らか この関係式は、t(AB)の(i,j)成分がtBtAの(i,j)成分と等しいことを示しています。よって t(AB)=tBtA Σ a_jk*b_ki=Σ b_ki*a_jk について積の交換をした理由が知りたいです。 t(AB)=tBtAだから、なんとなく交換したのではなくて交換しなければ成らない理由があると思うのですが その点について教えていただけませんでしょうか? 以上、よろしくお願い致します。

  • 三角行列の問題で悩んでいます。

    三角行列の問題で悩んでいます。 上三角行列と下三角行列の積について、どのようなことが分かるか考えてみよ。 これはどんなことを答えたら良いのでしょうか?とりあえず一般の式で三角行列の積を作って考えてみたのですが、わかりません。 分かる方がいらっしゃいましたら回答お願いいたします。

  • 転置行列 証明

    転置行列 証明 t(AB)=t(B)t(A) の証明について。 (l,m)行列をAとしてAの(i,j)成分をa(i,j) (m,n)行列をBとしてBの(i,j)成分をb(i,j) 2つの行列の積の(i,j)成分は Σ[k=1~m]a(ik)b(kj)と定義されます。 ABの転置行列t(AB)の(i,j)成分t(AB)(i,j)=(AB)(j,i) よって、 Σ[k=1~m]a(jk)b(ki)・・・(1) =Σ[k=1~m]t(a(jk))t(b(ki))・・・(2) =Σ[k=1~m]a(kj)b(ik)・・・(3) =Σ[k=1~m]b(ik)b(kj)・・・(4) =t(B)t(A) 上は参考書などでよく見る証明なのですが、(3)ってそもそも計算できるのですか? (1)~(4)までの流れは理解できるのですが、(3)を等式でつないでいいのかと気になりました。 (l,m)行列と(m,n)行列の積は(l,n)行列と定義されますが、(3)とは関係ないのでしょうか? ご回答よろしくお願い致します。

  • マトリックスの積と行列式の積

    X=ABCでX,A,B,Cはすべてマトリックスとします。サフィックスで表示するならば、 X(i,j)=A(i,m)B(m,n)C(n,j) ということかと思いますが。 この場合、 det(X)=det(A)det(B)det(C)になるとのことですが、簡単に証明できるでしょうか。線形代数の教科書を見れば必ず載っていると思うのですが、これは何も見ないで出来なくちゃと思って考え込んでいます。 X=ABの場合だけ証明できたらあとは何回積があっても同じかとは思いますが。行列式なので小行列などを用いて考えるのだろうと思いますが、パッと思いつきません。よろしくお願いします。