• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:行列式 |AB|=|A||B| の証明)

行列式の証明に関する質問

このQ&Aのポイント
  • 質問は、行列式の証明に関してです。
  • 証明では、線形性と交代性を持つ関数Fとその定理F(a1,...,an) = F(e1,...,en)|A|を使用します。
  • 証明の最後の行にある(*)でF(e1,...,en)とD(a1,...,an)が等しいことが理解できません。

質問者が選んだベストアンサー

  • ベストアンサー
  • mazoo
  • ベストアンサー率53% (21/39)
回答No.1

定義通りです。 F(b1,....,bn)=D(Ab1,.....,Abn) より F(e1,....,en)=D(Ae1,.....,Aen)=D(a1,.....,an) ∵Aej=aj

ume-kun
質問者

お礼

これは気付かなかったです。ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 行列式(入門)の証明

    問.Aをn次正方行列とする。   零ベクトルでないn項列ベクトルbによって、   Ab=b が成り立っていれば |A|=0 であることを   証明せよ。 線形代数について学習し始めたばかりで、考え方や証明の仕方 に慣れていません。 Ab=b ということは、行列Aが単位行列であることと関係があるのでしょうか。 いろいろ教えていただけると助かります。お願いします。

  • n次正方行列Aに関して次の[1]~[5]はすべて同値であることを証明せよ。

    n次正方行列Aに関して次の[1]~[5]はすべて同値であることを証明せよ。 [1] Aは正則 [2] |A|≠0 [3] rank A = n [4] Aのn個の列ベクトルは1次独立。 [5] AB = Eを満たすn次正方行列Bが存在する。  [1]→[2] Aが正則であるから、Aには逆行列が存在し、AA^-1=Eとなる。 |AA^-1|=|E|より、|A||A^-1|=1≠0となり、|A|≠0であることがわかる。 ∴ Aが正則ならば|A|≠0である。 [2]→[3] P、Qを正則行列として、 PAQ=(Er 0 0 0) としたとき Aがn次正方行列なので、P、Q および右辺の行列もn次の正方行列である。 |A|≠0より|PAQ|≠0で(Er 0 0 0)≠0となり、r=nなり、rankA=nが言える。 ∴ |A|≠0ならば、rankA=nである。 [3]→[4] Aがn次正方行列でrankA=nより、 Aに基本変形を行い階段行列を作っていくと、最終的にn行n列の単位行列にできる。 よって、単位行列のn個の各列ベクトルは、単位基底であるので1次独立である。 ∴ rankA=nならば、Aのn個の列ベクトルは1次独立である。 [4]→[5] Aの列ベクトルをa1、a2、・・・、 anとする。 また、x1、x2、・・・・・、xnをスカラーとして、x1a1+x2a2+・・・・+xnan=0・・・(1)とする。 a1、a2、・・・・、anが1次独立であるので、(1)式中のxi(i=1、2、・・・n)はすべて0となる。 このとき|A|=0であると、xiが自明な解以外の解を持ってしまうので |A|≠0である必要がある。|A|≠0であれば、A^-1が存在し、AA^-1=Eとなる。 このとき、A^-1=Bとすれば、AB=Eとなる。 ∴ Aのn個の列ベクトルが1次独立ならば、AB=Eを満たすn次正方行列Bが存在する。 [5]→[1] AB=Eより、|A||B|=1 つまり|B|≠0。このことよりBC=Eとなる行列Cが存在する。 C=EC=(AB)C=A(BC)=AE=A。 ここで、BA=Eであることがわかる。 AB=EのBとBA=EのBが同じであり、Aに対して、Bが1つしか存在しない。 よって、BがAの逆行列であることがわかる。 Aに逆行列が存在するということは、Aは正則である。 ∴ AB=Eを満たすn次正方行列が存在すれば、Aは正則である。 上記のように解いたのですが、証明できていますでしょうか? アドバイスお願い致します。

  • シムソンの定理の証明

    シムソンの定理の証明 ホームページ http://www004.upp.so-net.ne.jp/s_honma/ptolemaios/simson.htm の作成者に質問したかったのですが適当な所がみつからなかったのでここで質問します。 シムソンの定理 △ABCの外接円周上の点Pから BC、CA、AB に下ろした垂線の足を D、E、F とする。 このとき、3点 D、E、F は1直線上にある。 この直線のことを、シムソン線という。 (証明)4点 P、F、A、E は、同一円周上にあるので、∠PFE=∠PAE … と左図と一緒に書かれていましたが、 左図では確かに ∠PFE=∠PAE ですが 右図では4点 P、F、A、が 、同一円周上にあるにもかかわらず  ∠PFE≠∠PAE となってしまい、この証明は誤りなのではないでしょうか? シムソンの定理は、 「A,B,C,P,が同一円周上の点で D,E,F が P から BC,CA,AB への垂点」 という条件で P,A,B,C の位置に関係なく成立することを 証明しなければ、証明とはいえないのではないでしょうか? 以下の証明の方がよいのではないでしょうか? △ABCの外接円周上の点Pから BC、CA、AB に下ろした垂線の足を D、E、F とする。 外接円の中心に 0 を対応させ 点 P に 1 を対応させて 外接円を単位円とする座標をいれて 点 A,B,C,D,E,F のそれぞれの位置の複素数を a,b,c,d,e,f とすると |a|=|b|=|c|=1 となるから 2d=b+c-bc+1 2e=c+a-ca+1 2f=a+b-ab+1 x~=(xの共役複素数) とすると 4((e-d)(f~-d~)-(e~-d~)(f-d)) =((a~b-ab~)(|c|^2-1)+(b~c-bc~)(|a|^2-1)+(ac~-ca~)(|b|^2-1) +a(|c|^2-|b|^2)+b(|a|^2-|c|^2)+c(|b|^2-|a|^2) +a~(|b|^2-|c|^2)+b~(|c|^2-|a|^2)+c~(|a|^2-|b|^2)) |a|=|b|=|c|=1 だから (e-d)(f~-d~)-(e~-d~)(f-d)=0 e-d と f-d の向きが等しいから 3点D,E,Fは1つの直線上にある

  • 行列の証明を教えてください

    行列A=(a,b,c,d),B=(1,0,1,0),E=(0,0,0,0), A^2=B,B^2=E,BAB=A^3のとき、 次になることを証明。 (1)BA^2=A^2B (2)(a+d)(AB-BA)=O (3)A^3≠AならばA^2=-E 行列を3学期から習い始めて計算問題しかやっていませんが、 問題集にこの問題がありました。 どう証明すればよいのかアドバイスお願いします。 (親に頼んで質問してもらいました)

  • 行列の証明がわからない!!

    だいぶ考えたんですけど、わからないんで解説付きで教えて下さい。 n次正方行列A,BがAB=BAを満たす時,次の事を証明せよ。 1)Aの固有ベクトルはBの固有ベクトルである。 2)ABとBAの固有値は等しい。 1)はまったくわからないんです。2)はABとBAは同じなんじゃないのかなって思うんですけど、違うんですかね?

  • 場合の数 a1<a2<a3・・・・ b1<b2<b3<・・

    a1,a2,a3,・・・・an;b1,b2,b3,・・・bn は1,2,・・・2nを任意に並べ替えたものである。 このうち、次の(ア)~(ウ)を満たすものの総数をpnとする。 (ア)a1<a2<a3・・・<an (イ)b1<b2<b3・・・<bn (ウ)aj<bj(j=1,2・・・n) (1)p2、p3、p4、p5を求めよ (2)pnをnを用いて表せ この問題に取り組んでいるのですが、うまく数える方法あるでしょうか? 数え上げてみたのですが、自信が全くないです・・・ p2=2 p3=5 p4=15

  • .a≧0、b≧0のときa+b/2≧√ab、等号はa=bのときを証明した

    .a≧0、b≧0のときa+b/2≧√ab、等号はa=bのときを証明したいんですけど、教えてください

  • (a^2+b^2)/(1+ab)

    a,bを整数として(a^2+b^2)/(1+ab)が整数だとすると、(a^2+b^2)/(1+ab)は平方数になることを証明せよ という問題で、 ヒントみたいので、bが0の時にほにゃららとなってて、確かにbが0のときはaがなんでも条件を満たすのですが、bが0以外で与式が整数にならない証明(もしくはほかのbでも成り立つという証明)がまったく思いつかず、、、 回答もしくはもうちょっとヒントお願いします。

  • 数列の極限の証明

    「a1=a,b1=b,(a>b>0) a(n+1)=(an+bn)/2 b(n+1)=anbn^1/2 で定まる二つの数列{an},{bn}は同じ極限値を持つことを示せ。」 という問題を解いていて、このリンクの証明を見たのですが、 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1463528674 証明の最後で、a_n+1=ka_n を満たす1より小さい正の実数kが存在することから、 a_n=k^(n-1)*a1 として、n→∞でa_n→0としていましたが、 a_n=f(n)として、f(x)が単調減少関数でf(n+1)=k_n(fn) (k_nはnによって変化する1より小さいある正の定数)となっても、 k_nはnに依存するので、必ずしもx(またはn)→∞でf(x)(またはf(n))→0になるとは限らないのではないのでしょうか。(ex. k_n→1 (n→∞), f(x)=(1/x)+(1/2)) その可能性はないのでしょうか? 以下がリンク先の証明の全文です。 与えられた漸化式と0<a<bより帰納的に0<an,0<bnとなる。 すると相加・相乗平均の関係より a(n+1)/b(n+1)=(an+bn)/2√(anbn) =(1/2){√(an/bn)+√(bn/an)}≧(1/2)*2*√(an/bn)*√(bn/an) =1 ∴b(n+1)≦a(n+1)となる。 ここで等号が成り立つとすると bn=anより a(n+1)=(1/2)(an+bn)=(1/2)*2an=an となり an=a(n-1)=…=a1=a=b1=b となりa<bに矛盾する。 よって等号は成立しないので b(n+1)<a(n+1) となり、したがって bn<an…(*) となる。 すると an+bn<2anより a(n+1)=(1/2)(an+bn)<(1/2)*2an=an となる。 したがって0<anより a(n+1)=k*an を満たす1より小さい正の実数kが存在する。 すると an=k*a(n-1)=k^2*a(n-2)=…=k^(n-1)*a1=k^(n-1)*a となるから lim[n→∞]an=a*lim[n→∞]k^(n-1)=0…(**) となる。 すると(*)と0<bnより 0<bn<an だから(**)からはさみうちの原理により lim[n→∞]bn=0 となる。 よって lim[n→∞]an=lim[n→∞]bn=0 となる。

  • ■ 行列問題の証明 ■

    正方行列A,BがAB+BA=I、A^2=A^B=0、C=ABの関係を満たすとき C^2=Cを証明して、固有値が0または1であることを導けという問題です。 C^2=Cは証明しました。固有値のほうでわかんなくなって解説見たんですけど・・ C^2ⅹ=λ^2ⅹ(ⅹは列ベクトル)という途中式(←これはわかる)のあと、そこからどうして λ(λ-1)ⅹ{/=}0ということになるんでしょうか?? λは固有値、{/=}はイコールの否定という意味です。右辺の0はゼロベクトルです。 よろしくお願いします><