• 締切済み
  • 困ってます

積分について

次の問題を積分するといくらになるか分かりますか。 1/(x^2+1)を(arctanx)'にし、置き換えてますが、最終的に答えと合いません。 y=-e^(2x)∫(x/(x^2+1))/(2-x)dx+xe^(2x)∫(1/(x^2+1))/(2-x)dx 答えは y=(c1+c2x+xarctanx-(1/2)log(1+x^2))e^(2x) となっています。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数56
  • ありがとう数2

みんなの回答

  • 回答No.2

積分定数の置きかたによる外見だけの違いでは、ない様子です。 目を通しましたが、カッ飛び過ぎていて、間違いの由来に見当がつきません。 = -e^(2x)∫x/(x^2+1)dx + xe^(2x)∫1/(x^2+1)dx ↑ 「 /(2-x) 」がどうやって消えたのか不明。 = -e^(2x){ 1/(x^2+1)-∫(arctan x)dx } + xe^(2x){ x(arctan x)-(1/2)log(1+x^2) } ↑ 何をどう勘違いすると、こうなるのか… 部分積分の式を間違えた? = -e^(2x){ 1/(x^2+1)-1/(x^2+1) } + xe^(2x){ x(arctan x)-(1/2)log(1+x^2) } ↑ ∫(arctan x)dx = 1/(x^2+1) ではない。 微分と積分が逆?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 不積分の問題で、解けないものがあるので教えていただきたいです。

    不積分の問題で、解けないものがあるので教えていただきたいです。 (1) ∫4-X/X(X-1)(X-2)dx →  logX^2|X-2|/|X-1|^3 (2) ∫X^2+8X-1/(X-1)(X+1)(X+3)dx  → log|{(X+1)^2|X-1|/(X+3)^2}| (3) ∫4/X^2(X+2)dx  →  -2/x+loglX+2/?l (4) ∫1/?(X+1)^2dx  →  1/x+1+log|X/X+1| (5) ∫X^2+9X/(X+1)(X-1)^2dx  →  -5/X-1+log|X-1|^3/(X+1)^2 (6) ∫4/X(X^2+4)dx  →  1/2log(X^2/X^2+4) (7) ∫3X^2-2X+2/(X-2)(X^2+1)dx  →  1/2log{(X-2)^4(X^2+1)} (8) ∫2/(X+1)(X^2+1)dx  →  1/2log{(X+1)^2/X+1}+arctanX (9) ∫(X+1)^2/X(X^2+1)dx  →  log|X|+2arctanX (10) ∫4X/X^4-1dx  →  log|X^2-1|/X^2+1 (11) ∫4/X^4-1dx  →  log|X-1/X+1|-2arctanX 矢印はさんで左が問、右が答えです。 問題数多くてすみません。プリントの中の何題かなのですが、どうしても答えにいきつかず 途中計算がわかりません。(有理関数の積分?するのかなとは思うのですが、答えがおかしくなってしまいます) 計算方法のわかる方、お手数ですが解答、もしくはヒントだけでもよろしくお願いいたします。

  • 定積分

    次の曲線の長さを求めよ (1)y=(1/3)x^(3/2) (0≦x≦12) (2)y=x(2-x) (0≦x≦2) という問題なのですが、 (1)y´=(1/2)x^(1/2) 公式より 長さs=∫[0→12]√(1+{(1/2)x^(1/2)}^2)dx =∫[0→12]√(1+(1/4)x)dx となるんですが、この積分の仕方がわかりません。 お願いします。 (2)y´=2-2x 長さs=∫[0→2]√(1+{2-2x}^2)dx =∫[0→2]√(1+(4-8x+4x^2))dx =∫[0→2]√(4x^2-8x+5)dx =∫[0→2]√{((2x-2)^2)+1}dx t=2x-2とおくとdx=dt/2 x:0→2、t:-2→2 よって =∫[-2→2](1/2)√(t^2+1)dt 公式より =1/4[t√(t^2+1)+log(t+√(t^2+1))][-2→2] =1/4{ {-2√5+log(-2+√5)}-{2√5+log(2+√5)} } =1/4{-4√5+log(-2+√5)-log(2+√5)} となるんですが、答えは√5+1/2log(2+√5)です。 この計算であってますか。どうすれば、答えになるでしょうか? お願いします。

  • 定積分、不定積分

    解析。以下の問題教えてください 次の定積分、不定積分を求めよ。(2)は上端にπ/6下端に0です (1)∫xe^(2x) dx (2)∫π/6 xsin3x dx 0 (3)∫x^3log dx (4)∫x^2e^(2x) dx

  • 回答No.1

私には、わかりますが… まず、貴方自身の答えを書かないと。 不定積分のコミ入った計算では、 途中の手順によって、積分定数の入り方に 見た目大きな違いが起こることが 少なくありません。 貴方の答えも、実は合っているかも知れません。 もし、間違いを探せというのならば、 間違いった計算に目を通さないと…

共感・感謝の気持ちを伝えよう!

質問者からの補足

遅くなってすいません。 私の回答を載せます。 問題より =-e^(2x)∫x/(x^2+1)dx+xe^(2x)∫(1/(x^2+1)dx =-e^(2x){1/(x^2+1)-∫(arctanxdx)}+xe^(2x){xarctanx-(1/2)log(1+x^2)} =-e^(2x){1/(x^2+1)-1/(x^2+1)}+xe^(2x){xarctanx-(1/2)log(1+x^2)} =xe^(2x){xarctanx-(1/2)log(1+x^2)} }となりました。

関連するQ&A

  • 不定積分の問題について

    写真の問題が検算すると間違っているようですが、積分が違うのか微分が違うのかわかりません。どこが間違っていますか? 問題は、 ∫(2x^4 - 3x^3 + 2x^2 - 3x - 2)/(x^3 - x^2 + x - 1) dx です。 計算すると、答えが x^2 - x + log((x^2 + 1)^(1/2)/(x - 1)^2) + arctanx + C(積分定数) になりました。 でもこれを微分すると (2x^4 - 3x^3 + 2x^2 -2x -2)/(x^3 - x^2 + x - 1) になります。 問題では分子のxの係数は-3だけど計算では-2になってしまいます。

  • 部分積分法

    部分積分法にて解きましたが途中計算のどこかが間違っており答えにたどり着きませんでした。 ミスした箇所を教えていただけると嬉しいです。 ∫x^(2) (e^x) dx = x^(2) ・-e^(-x) - ∫2x・-e^(-x) dx = -x^(2)・e^(-x) + 2∫xe^(-x) dx  ・・・(1) ----------------------- 上記の式の∫xe^(-x) dx について積分 ∫xe^(-x) dx = -xe^(-x) - ∫-e^(-x) dx = -xe^(-x) + e^(-x) dx これを(1)の部分に当てはめる = -x^(2)・e^(-x) + 2{ -xe^(-x) + e^(-x) } = -x^(2)・e^(-x) - 2xe^(-x) + 2e^(-x) = -{x^(2) + 2x - 2 }e^(-x) + C     ← 答え しかし解答は  -{x^(2) + 2x + 2 }e^(-x) + C になります。私の回答とは +2 と-2の違いなのですが、 どこから、差がでているのかがわかりませんでした。

  • 積分の問題教えてください

    積分の問題教えてください 1,部分積分 (1)∫xe^(2x) dx (2)∫xsin2x dx (3)∫(logx)/(x^3) dx (4)∫log(1+x) dx 2,置換積分 (1)∫(dx)/(2x+1)^3 (2)∫x((x^2)+1)^5 dx (3)∫x(e^(-x)^(2)) dx (4)∫cos^(3)xsinx dx (5)∫e^(x)cosx dx の9問です。 どうかお願いします。

  • 積分方法

    積分の解き方が解らなくなってしまったので、援助お願いしますm(_ _)m 積分の問題で「x/(x^2+1)」を説いてたのですが、教科書などではいきなり答えに飛んで途中式が解りません。 途中式は後で他の問題でも応用できるように細かく書いていただけると助かります。 問題 「∫x/(x^2+1)dx」 途中式 ∫x/(x^2+1)dx =∫1/(x^2+1)dx*∫xdx? =log(x^2+1)*1/2(x^2)? 答えは「1/2(log(x^2+1))」だそうです。 よろしくお願い強います。

  • 至急!高校の数III積分です

    不定積分です。とにかく急いでます。答えまでの解法を教えてください! よろしくお願いします!! (1)∫x(3x-2)^3 dx 答え…1/90(3x-2)^4(6x+1)+C (2)∫x+2/(x-1)^3 dx答え…-(2x+1)/2(x-1)^2+C (3)∫(sin x/2+cos x/2)^2 dx 答え…x-cosx+C (4)∫cos^2 x/2 dx 答え…1/2x+1/2・sinx+C (5)∫sinx・cosx・cos2x dx 答え…-1/16・cos4x+C (6)∫x^2+x+1/x^2+1 dx 答え…x+1/2・log(x^2+1)+C (7)∫x^4/x^2-1 dx 答え…1/3・x^3+x+1/2・log|x-1/x+1|+C (8)∫x^3/x^2-4 dx 答え…1/2・x^2+2log|x^2-4|+C (9)∫(logx)^3 dx 答え…x(logx)^3-3x(logx)^2+6x・logx-6x+C

  • 置き換え積分法での解き方。

    問題集で置き換え積分法で6問 分からない問題がありました。 途中式も含めて、教えてください宜しくお願いします。 (1)∫3x (x + 3)^(3) dx (2)∫x √(1-x) dx (3)∫sin^(4)(x)・ cos(x) dx (4)∫xe^{x^(2)} dx (5)∫xcos{x^(2)+1 } dx (6)∫1 / x(1 + logx ) dx 答え (1)(3/10)(x+2)^(4) (2x-1) + C (2)(-2/15)(3x+2)(1-x) √(1-x) + C (3)(1/5)sin^(5) (x) + C (4)(1/2)e^{x^(2)} + C (5)(1/2)sin{x^(2)+1} + C (6)log | 1 + logx | + C

  • 積分の問題が分かりません。

    1/{x^2*√(x^2-1)}を積分する問題で、 t=x+√(x^2-1)とすると、 x=(t^2+1)/2t、 √(x^2-1)=(t^2-1)/2t、 dx=2(t^2+1)/4t^2となり、 ∫{2t/(t^2+1)}^2*2t/(t^2-1)*2(t^2+1)/4t^2dt= ∫4t/{(t^2+1)(t^2-1)}dt= ∫-2t/(t^2+1)+1/(t+1)+1/(t-1)dt= -log|t^2+1|+log|t+1|+log|t-1|= log|(t^2-1)/(t^2+1)|= log|2{x^2+x√(x^2-1)-1}/2x{x+x√(x^2-1)}|= log|x/√(x^2-1)| となったのですが、回答では√(x^2-1)/xとなるそうです。 何処が間違えているのかどなたかお教え下さい。

  • 不定積分について

    大学一年の者です。問題に略解しかついていない某微分積分の教科書に記載されている問題なのですが、途中式がよくわからない問題があるので、質問させて頂きました。 ∫ dx/x(1+x^2)^2 なのですが、 ∫ dx/(1+x^2)^2 を積分して (x/1+x^2 + arctanx)/2 となり、これを用いて、部分積分による方法で解こうとしたのですが上手く解けません。ちなみにarctanxはアークタンジェントxのことです。  略解は   1/2(1+x^2) + log(x^2/1+x^2)/2 + C(積分定数) となっております。

  • 不定積分の問題です

    ∫(x^4 + x + 1)/(x^3 - 2x^2 + x)dx の答えは 1/2x^2 + 2x + log(x-1)/x + 1/(x-1) + C(積分定数) で、合っていますか?

  • 広義積分の問題を教えて下さい

    次の問題の答えを教えて下さい。 1.次の広義積分を求めよ。ただし、r,kは正の定数とする。 (a)∫(rから∞)dx/x^2 (b)∫(0からr)dx/√r-x (c)∫(-∞から0)e^(kx)dx (d)∫(0から1)dx/x^2の三乗根 (e)∫(1から∞)dx/x(1+x) (f)∫(0から1)√(x/1-x)dx 2.次の広義積分を求めよ。 (a)∫(-1から1)dx/x (b)∫(-1から1)dx/x^2 (c)∫(-∞から∞)dx/x^2+1 3.広義積分I=∫(0からπ/2)log(sinx)dxの値を、次のようにして求めよ。 (a) I=∫(π/2からπ)log(sinx)dx=∫(0からπ/2)log(cosx)dxが成り立つことを示せ。 (b)x=2tとおいて2I=∫(0からπ)log(sinx)dxの値を計算することによって、I=-(π/2)log2であることを示せ。 4.s>0として、ガンマ巻数Γ(s)=∫(0から∞)e^(-x)x^(s-1)dxについて式Γ(s+1)=sΓ(s)が成り立つことを示せ。 5.p>0,q>0として、ベータ関数Β(p,q)=∫(0から1)x^(p-1)(1-x)^(q-1)dxについて式Β(p,q)が成り立つことを示せ。 お願いします。