• ベストアンサー
  • 困ってます

積分です。。

不定積分、∫(1+e^-x分の1-1+e^x分の1)dx の計算です。。 答えは2log(e^x+1)-x+Cです。。 何回かやったんですけど、答えがすべて違ってしまい、 途中式も何をやっていたのか分からなくなってしまうんです(>_<) すいませんがお願いします。。

noname#6109

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数152
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

e^xしか登場しない場合、置換すると少し楽になることがあります。 被積分関数を変形すると、 1/(1+e^-x) - 1/(1+e^x) =e^x/(e^x+1) - 1/(1+e^x) =(e^x-1)/(e^x+1) となります。 ここで、e^x=tと置くと、(e^x)dx=dtなので、dx=(1/e^x)dt=(1/t)dtとなるから、 ∫{1/(1+e^-x) - 1/(1+e^x)}dx =∫{(t-1)/(t+1)}*(1/t)dt (※) すると、被積分関数は(t-1)/{t(t+1)}ですが、これは、2/(t+1)-1/tと変形できるので、 (※)=∫{2/(t+1)-1/t}dt =2log(t+1) - log t + C (Cは任意定数) =2log(e^x+1) - x + C

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました!!

関連するQ&A

  • この不定積分を教えてくださいませんか?

    この不定積分を教えてくださいませんか? ∫dx/x(logx)^2 答えは-1/logx+Cなのですが・・・。

  • 不定積分について

    大学の微分積分でてきた問題(答えが無い) で(2X+3)/X^2+9を不定積分しろとあったのですが 分子が分母を微分した結果にならないからlogで積分できないし 部分分数にすることもできずまた分子を分母でわることもできず 積分ができなくて困っています それと(X-1)log(X+1)dxの不定積分とe^2xcosxdxの不定積分を 部分積分法を使ってやってみたのですが何回くりかえしても 式が展開されるだけで困っています

  • 不積分の問題で、解けないものがあるので教えていただきたいです。

    不積分の問題で、解けないものがあるので教えていただきたいです。 (1) ∫4-X/X(X-1)(X-2)dx →  logX^2|X-2|/|X-1|^3 (2) ∫X^2+8X-1/(X-1)(X+1)(X+3)dx  → log|{(X+1)^2|X-1|/(X+3)^2}| (3) ∫4/X^2(X+2)dx  →  -2/x+loglX+2/?l (4) ∫1/?(X+1)^2dx  →  1/x+1+log|X/X+1| (5) ∫X^2+9X/(X+1)(X-1)^2dx  →  -5/X-1+log|X-1|^3/(X+1)^2 (6) ∫4/X(X^2+4)dx  →  1/2log(X^2/X^2+4) (7) ∫3X^2-2X+2/(X-2)(X^2+1)dx  →  1/2log{(X-2)^4(X^2+1)} (8) ∫2/(X+1)(X^2+1)dx  →  1/2log{(X+1)^2/X+1}+arctanX (9) ∫(X+1)^2/X(X^2+1)dx  →  log|X|+2arctanX (10) ∫4X/X^4-1dx  →  log|X^2-1|/X^2+1 (11) ∫4/X^4-1dx  →  log|X-1/X+1|-2arctanX 矢印はさんで左が問、右が答えです。 問題数多くてすみません。プリントの中の何題かなのですが、どうしても答えにいきつかず 途中計算がわかりません。(有理関数の積分?するのかなとは思うのですが、答えがおかしくなってしまいます) 計算方法のわかる方、お手数ですが解答、もしくはヒントだけでもよろしくお願いいたします。

その他の回答 (1)

  • 回答No.1
  • mmky
  • ベストアンサー率28% (681/2419)

不定積分、∫{1/(1+e^-x) -1/(1+e^x)}dx の計算です。。 ということですね。やってみましたが多少の操作は必要ですが 答えは2log(e^x+1)-x+C になりますね。 参考程度に ∫{1/(1+e^-x) -1/(1+e^x)}dx =∫{1/(1+e^-x)}dx -∫{1/(1+e^x)}dx =x+log(1+e^-x)-x+log(1+e^x)+c =log(1+e^-x)+log(1+e^x)+c =log{(1+1/e^x)(1+e^x)}+c =log{(2+e^x+1/e^x)(e^x)(e^-x)}+c =log{(2e^x+e^2x+1)(e^-x)}+c =log{1+e^x}^2-x+c =2log{1+e^x}-x+c 註:(e^x)*(e^-x)=1, を掛けて少し変形すると答えになります。 計算過程 e^-x=z , dx=-dz/e^-x=-dz/z ∫{1/(1+e^-x)}dx=-∫{1/z(1+z)}dz=-∫{(1/z)-1/(1+z)}dz =-logz+log(1+y)+c1 =-log(e^-x)+log(1+e^-x)+c1 =x+log(1+e^-x)+c1 e^x=y , dx=dy/e^x -∫{1/(1+e^x)}dx=-∫{1/y(1+y)}dy=-∫{(1/y)-1/(1+y)}dy =-logy+log(1+y)+c2 =-log(e^x)+log(1+e^x)+c =-x+log(1+e^x)+c 以上 参考程度に

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました!!

関連するQ&A

  • 定積分

    次の曲線の長さを求めよ (1)y=(1/3)x^(3/2) (0≦x≦12) (2)y=x(2-x) (0≦x≦2) という問題なのですが、 (1)y´=(1/2)x^(1/2) 公式より 長さs=∫[0→12]√(1+{(1/2)x^(1/2)}^2)dx =∫[0→12]√(1+(1/4)x)dx となるんですが、この積分の仕方がわかりません。 お願いします。 (2)y´=2-2x 長さs=∫[0→2]√(1+{2-2x}^2)dx =∫[0→2]√(1+(4-8x+4x^2))dx =∫[0→2]√(4x^2-8x+5)dx =∫[0→2]√{((2x-2)^2)+1}dx t=2x-2とおくとdx=dt/2 x:0→2、t:-2→2 よって =∫[-2→2](1/2)√(t^2+1)dt 公式より =1/4[t√(t^2+1)+log(t+√(t^2+1))][-2→2] =1/4{ {-2√5+log(-2+√5)}-{2√5+log(2+√5)} } =1/4{-4√5+log(-2+√5)-log(2+√5)} となるんですが、答えは√5+1/2log(2+√5)です。 この計算であってますか。どうすれば、答えになるでしょうか? お願いします。

  • 置換積分?

    (1)∫1/√(e^x+1)dx (2)∫1/x(3√x+1)dx ※3√はルート3乗根の意味です (1)はe^xをtとおいて計算してみたのですがうまく行かず さらに√(e^x+1)を丸ごとtとおいて計算したのですがどうしても 答えにたどり着けませんでした (2)は3√x+1とtとおいてみたのですが余計に複雑なってしまい そのほか多数試してのですがこちらもよくわかりませんでした それぞれ答えは (1)log(√(e^x+1)-1/√(e^x+1)+1) (2)3log(3√x/3√x+1) とのことですがよろしくお願いします また、積分計算の学習にわかりやすい本がありました 同時に教えていただけないでしょうか

  • 積分 問題

    積分 問題 ∫xlogx(1-x)dxについて。 部分積分を使って解きました。 ∫xlogx(1-x)dx=∫((1/2)x^2)´log(1-x)dx =(1/2)x^2・log(1-x)-∫(1/2)x^2・1/(1-x)・-1dx ∫(1/2)x^2・1/(1-x)・-1dxについて考える。 ∫(1/2)x^2・-1/(1-x)dx=1/2∫-(x^2)/(1-x)dx =1/2∫-(x^2)+1-1/(1-x)dx=1/2∫(1-x)(1+x)-1/(1-x)dx =1/2∫(1+x)-(1/(1-x))dx=1/2(x+(1/2)x^2-(-log(1-x)))+C =1/2(x+(1/2)x^2+log(1-x))+C よって、 ∫xlogx(1-x)dx= (1/2)x^2・log(1-x)-1/2(x+(1/2)x^2+log(1-x))+C としたのですが、答えはどうでしょうか? 間違っている場合は、どこが間違っているのか 教えて頂けるとありがたいです。また、もっと簡単な 解き方があれば教えて下さい。 以上、よろしくお願い致します。

  • 積分 問題

    積分 問題 ∫xlog(1-x)dxについて。 部分積分を使って解きました。 ∫xlog(1-x)dx=∫((1/2)x^2)´log(1-x)dx =(1/2)x^2・log(1-x)-∫(1/2)x^2・1/(1-x)・-1dx ∫(1/2)x^2・1/(1-x)・-1dxについて考える。 ∫(1/2)x^2・-1/(1-x)dx=1/2∫-(x^2)/(1-x)dx =1/2∫-(x^2)+1-1/(1-x)dx=1/2∫(1-x)(1+x)-1/(1-x)dx =1/2∫(1+x)-(1/(1-x))dx=1/2(x+(1/2)x^2-(-log(1-x)))+C =1/2(x+(1/2)x^2+log(1-x))+C よって、 ∫xlogx(1-x)dx= (1/2)x^2・log(1-x)-1/2(x+(1/2)x^2+log(1-x))+C としたのですが、答えはどうでしょうか? 間違っている場合は、どこが間違っているのか 教えて頂けるとありがたいです。また、もっと簡単な 解き方があれば教えて下さい。 以上、よろしくお願い致します。

  • 数学IIIのlogの積分

    数学IIIの不定積分の問題で、 log(x+1)を積分する、という問題があります。 これを置換積分すると、答えが (x+1)logx-(x+1)+cとなってしまいました。 でも、答えや類題では+cの前が-xになっています。 また、他サイトで見た公式には、 logxの不定積分は、 x(logx-1)+cとなっていて、この通りに計算しても+cの前は(x+1)になるとおもうんですが… なぜ、+cの前は-xになるのでしょうか?

  • 不定積分がわかりません

    次の不定積分がわかりませんのでお教えください。 ◎ ∫[1/{(x+a)(x+b)}]dx です。 この問題は、∫{1/(x+a)}dx-∫{1/(x+b)}dx =log|x+a|-log|x+b|=log{(x+a)/(x+b)}じゃないんでしょうか。解答は、1/(b-a)log{(x+a)/(x+b)}と書いてあったのですが、どういうことでしょうか。 ◎ ∫[x/{(x+a)(x+b)}dx これも上記と同じやり方でやったのですができませんでした。教えてください

  • 積分の問題で質問です。

    不定積分∫dx/(x^4+4)を求めよ、という問題です。 部分分数分解して、 ∫{(-x/8+1/4)/(x^2-2x+2)+(x/8+1/4)/(x^2+2x+2)}dx の形に変形したのですが、とりあえず(-x/8+1/4)/(x^2-2x+2)だけ見て、 (-x/8)/(x^2-2x+2) + (1/4)/(x^2-2x+2) と分解して、片方ずつ積分しました。ここで、 ∫(-x/8)/(x^2-2x+2)dx (x^2=tと置く置換積分を利用しました) =-1/16∫dt/(t-2√t+2) =-1/16∫dt/{(√t-1)^2+1} =(-1/16)*arctan(√t-1) =(-1/16)*arctan(x-1) ∫(1/4)/(x^2-2x+2)dx =1/4∫dx/{(x-1)^2+1} =(1/4)*arctan(x-1) となりました。(x/8+1/4)/(x^2+2x+2)の積分も同様に解きました。 この解き方だと答えにlogは出てきませんが、解答を見るとlogが入ったものとなっていました。一応、別の方法でその解答の形までたどり着けたのですが、上で説明したやり方が間違っているとは思えません。この解法は合っていますか?それとも間違っているのでしょうか。 どなたか教えてください。

  • 不定積分

    この不定積分が解けません。 (1)∫5/(2x^2-7x+3)dx (2)∫dx/x(logx)^2 こたえは(1)loglx-3/2x-1l+C (2)-1/logx+Cなんですが わかりませんでした。 わかるかたは教えてくださいませんか?

  • 不定積分

    ∫{(2x+3)/(x^2-x+1)}dx  を解けです。 ∫{(2x-1+4)/(x^2-x+1)}dx =∫{(x^2-x+1)'/(x^2-x+1)}dx+∫{4/(x^2-x+1)}dx =log(x^2-x+1)+4*∫{1/(x^2-x+1)}dx 上記の式までは分かるのですが・・・。 ∫{1/(x^2-x+1)}dx の不定積分が分かりません。 途中式もあっているか確信はありません。 申し訳ございませんがよろしくお願い致します。

  • 至急!高校の数III積分です

    不定積分です。とにかく急いでます。答えまでの解法を教えてください! よろしくお願いします!! (1)∫x(3x-2)^3 dx 答え…1/90(3x-2)^4(6x+1)+C (2)∫x+2/(x-1)^3 dx答え…-(2x+1)/2(x-1)^2+C (3)∫(sin x/2+cos x/2)^2 dx 答え…x-cosx+C (4)∫cos^2 x/2 dx 答え…1/2x+1/2・sinx+C (5)∫sinx・cosx・cos2x dx 答え…-1/16・cos4x+C (6)∫x^2+x+1/x^2+1 dx 答え…x+1/2・log(x^2+1)+C (7)∫x^4/x^2-1 dx 答え…1/3・x^3+x+1/2・log|x-1/x+1|+C (8)∫x^3/x^2-4 dx 答え…1/2・x^2+2log|x^2-4|+C (9)∫(logx)^3 dx 答え…x(logx)^3-3x(logx)^2+6x・logx-6x+C