• ベストアンサー
  • すぐに回答を!

積分について

x・dy/dx+y+y^2/xを 変数分離形になおせという問題ですが、 du/2u+u^2=-dx/xとなるのはわかりました。 次にする積分ですが右辺の-dx/xは-log|x|になるのは分かるんですが 左辺が1/2(log|u|-log|u+2|)になるのが分かりません。 さらにlog|x^2u(u+2)|=2C になる過程が分かりません。 よろしくお願いいたします。

noname#76881

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数33
  • ありがとう数5

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • info22
  • ベストアンサー率55% (2225/4034)

次のように部分分数展開して2項に分ければ右辺と同様に積分できるだろう。 du/(2u+u^2)=(1/2){1/u-1/(u+2)}du =(1/2){du/u -du/(u+2)} ⇒(1/2)(log|u|-log|u+2|)+C1 =(1/2)log|u/(u+2)|+C1=-log|x|+C2 両辺2倍して、右辺を左辺に移項すると log|u/(u+2)|+2log|x|=log|(x^2)u/(u+2)|=2(C1-C2)=2C ここで、C=C1-C2とおく。 >さらにlog|x^2u(u+2)|=2C >になる過程が分かりません。 とはならないだろう。 log|(x^2)u/(u+2)|=2C だよ。 答が間違っているか、書き写しミスのどちらかだね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すいません。間違ってました。 ご丁寧にありがとうございました!!

関連するQ&A

  • 変数分離法で積分するときの積分変数について質問です。

    変数分離法で積分するときの積分変数について質問です。 例えば、dy/dx=yという式を変数分離法で解く時、両辺にdxをかけて、両辺をyで割って、1/ydy=dxという形にして両辺を積分します。このとき、教科書を見ると「∫1/ydy=∫dx+C」となっており、積分定数がついています。 積分の定義は「∫f(x)=F(x)+C」のように、積分を行ったものに積分定数がつくと習いました。しかし、変数分離の式「∫1/ydy=∫dx+C」では積分を行う前に積分定数がついています。これはなぜなのでしょうか?どなたかわかる方がいらっしゃいましたら教えてください。

  • 変数分離法の計算

    問題を2つ解いたのですが解答がでません。どこが間違っているか教えてもらえないでしょうか? 一つ目はこの前に質問して回答を見て納得し、自分でやって答えも出たのですが今やってみると解答と違っていました dy/dx=(1-y^2)/(1-x^2) dy/(1-y^2)=dx/(1-x^2) 部分分数にして両辺を積分すると log((y-1)/(y+1))=log((x-1)/(x+1))+logC logをはずして計算をすると y=(1-C+Cx)/(1+C-Cx) になるのですが解答は y=(x+C)/(1+Cx) になってました。積分定数の置き方が違うと思うのですがお願いします もう一つは (2x^3-y^3)ydx-x(x^3-2y^3)dy=0 dy/dx=(y/x)*(2x^3-y^3)/(x^3-2y^3) =(y/x)*(2-(y/x)^3)/(1-2(y/x)^3) y/x=u と置いて dy/dx=u+xu' よって u+xu'=u*(2-u^3)/(1-2u^3) 1+(x/u)u'=(2-u^3)/(1-2u^3) (1/x)dx=((1-2u^3)/u*(1+u^3)du 左辺を積分して 左辺=logx 右辺は部分分数にすると 右辺=(a/u+b/(1+u)+c/(1-u+u^2))du a=1 b=-3 c=-3より 右辺=1/u-(3/(1+u))-(3/(1-u+u^2))du ここで-(3/(1-u+u^2))の積分ができません 両方とも計算の仕方が間違っているのでしょうか?

  • 同次形微分方程式

    下の“微分方程式を解け”という問題がわかりません。 (1) (x+y)+(x-y)(dy/dx)=0 (2) xy(dy/dx)=x^2+y^2 この2つなんですが、一応、同次形微分方程式の範囲なので y/xの形にしてみたんですが・・・ (1) (x-y)(dy/dx)=-(x+y) (dy/dx)=-(x+y)/(x-y) 右辺の分母分子をxで割る (dy/dx)=-(1+y/x)/(1-y/x) y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx) よって u+x(du/dx)=-(1+u)/(1-u) x(du/dx)=-(1+u)/(1-u) -u x(du/dx)=-(1+u^2)/(1-u) (1-u)du/(1+u^2)=(1/x)dx 両辺を積分というとこの左辺のせきぶんがわかりません。 というかここまでまちがってるかもしれません。 (2) (dy/dx)xy=x^2+y^2 両辺をx^2でわる。 (dy/dx)(y/x)=1+(y/x)^2 y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx)よって u+x(du/dx)=(1+u^2)/u x(du/dx)=(1+u^2)/u -u x(du/dx)=(1/u) udu=(1/x)dx  両辺を積分 (1/2)u^2=logx+C よって(1/2)(y/x)^2=logx+C y^2=2x^2(logx+C) となり、とりあえず答えは合いました。過程はあってますか? あと、最終的な答えの形なんですがy=で答えるとかx=で答えるとか ってありますか?

その他の回答 (2)

  • 回答No.2
  • R_Earl
  • ベストアンサー率55% (473/849)

> 左辺が1/2(log|u|-log|u+2|)になるのが分かりません。 部分分数分解をします。 du/2u+u^2 = du{ 1 / (2u + u^2) } = du[ 1 / { u(u + 2) } ] 1 / { u(u + 2) }を部分分数分解すると 1 / { u(u + 2) } = (1/2) [ (1 / u) - {1 / (u + 2)} ] この結果から、 du/2u+u^2 = (du/2) [ (1 / u) - {1 / (u + 2)} ] これを積分すれば、∫(1 / u)du = log| u |、∫{ 1 / (u + 2) }du = log | u + 2 |となります。 > さらにlog|x^2u(u+2)|=2C > になる過程が分かりません。 左辺 = 1/2(log|u|-log|u+2|) = 1/2(log| u / (u + 2) | ) となるはずなので、最終的にlog|x^2u(u+2)|= 2Cとはならない気がします。 この点に関してはよく分かりません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

答えが間違ってたみたいです。すいません。 ご丁寧にありがとうございました!!

  • 回答No.1

du/2u+u^2 ではなくて、du/(2u+u^2)ならの話ですが、 du/(u(2+u)) = 1/2×(du/u-du/(u+2))なので積分すると 1/2(log|u|-log|u+2|) 1/2(log|u|-log|u+2|)=-log|x|+C なので 1/2(log|u|-log|u+2|) + log|x| = C log|u|-log|u+2| + 2log|x| = 2C log|u|-log|u+2| + log|x|^2 = 2C log|x^2u/(u+2)| = 2C となります。 この場合、log|x^2u(u+2)|=2C にはならないでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご指摘ありがとうございます。間違ってました。 ご丁寧にありがとうございました!!

関連するQ&A

  • 微分積分について

    微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。

  • 微分方程式の途中の変形が分かりません。

    変数分離形の微分方程式 (x^2*y-x^2)dy=(x*y^2+y^2)dx を解くのですが、 ∫(1/y-1/y^2)dy=∫(1/x-1/x^2)dx と変形し、 log|y|+1/y=log|x|-1/x+C (C:積分定数) まで、解きました。 これはy=○○の形にどうやって変形すればよいのでしょう? 何を使うなどのヒントでいいので、よろしくお願いします。

  • e^-1/Tの積分

    現在、次のような微分方程式を解かなければならず、 悪戦苦闘しています。 dx/dT=k/a*exp(-E/RT)*(1-x) この式のうち、k,a,E,Rは定数で既知なので、無視すると、 dx/dT = exp(-1/T)*(1-x) という微分方程式になります。 私はこの式をxとTの変数分離型の微分方程式と捉えて次のように変形しました。 dx/(1-x) = exp(-1/T)dT これの両辺を積分するのですが、左辺は ln{1/(1-x)} という答えになるのがわかるのですが、右辺の ∫exp(-1/T)dT という積分が解けません。 どなたか教えていただけませんでしょうか。 よろしくお願いいたします。

  • 微分方程式  積分方程式 について

    微分方程式y'=x+1について、 解は、 dy/dx=x+1 変数分離を行って、 dy=(x+1)dx 両辺を積分すると、 ∫dy=∫(x+1)dx・・・(※) よって、 y=1/2x^2+x+C (※)の部分ですが、これは積分方程式と 言っていいのでしょうか? 積分方程式って、何なんでしょうか? Wikipediaを見たのですが、わかりませんでした・・・ 以上、ご回答よろしくお願い致します。

  • あっていますか?

    (1+x)dy/dx(1+y)=0 この答えが変数分離を使い、 -log(1+x)=log(1+x)+C となったのですが、あってるのでしょうか・・・? よろしくお願いいたします。

  • 長方形の領域境界値問題

    長方形の領域0<=x<=a,0<=y<=bに関する境界値問題 d^2u/dx^2+d^2u/dy^2=0 x=0 du/dx=0 x=a, du/dx=sin(pi*y/b) y=0,u=0, y=b, u=0 変数分離法を用いてよい

  • 1/y・dy/dtを積分すると、どうしてlogey+C’’になるのでしょうか?

    とある微分方程式の教科書で勉強していると、疑問に思った箇所がありまして(>_<) dy/dt = ry ・・・(1) を、積分するという話なのですが、これを積分した結果が、 logey = rt+C’ ・・・(2) になるそうなのです。 教科書の説明では、「未知関数yを微分したdy/dt(左辺)は、もとの未知関数yに定数を掛けたものになっている(右辺)」ので、「単に両辺を積分しても、右辺をどう積分していいのかわからない」そうなのです。 そこで、"変数分離法"なるものを利用して、左辺を未知関数yだけに、右辺を定数と変数tだけにするために、両辺をyで割り、その後に積分するという手法を採っていました。 そうすれば、左辺が、 ∫1/y・(dy/dt) dt = ∫dy/y = logey+C’’ ・・・(3) となり、右辺は、 ∫r dt = rt+C’’’  ・・・(4) となるので、両辺の積分定数をまとめてC’と置いて、結果として(2)になるそうなのです。 私がわからないのは、左辺の積分、(3)についてです。 分数の積分の公式に、 1/x →積分→ logex(=lnx) +C http://ja.wikipedia.org/wiki/%E3%83%8D%E3%82%A4%E3%83%94%E3%82%A2%E6%95%B0 http://sqa.scienceportal.jp/qa4962140.html というものがあるそうなので、1/yを積分した「∫1/y dt」は、「logey+C’’(定数)」になるのだと思います。 でも、今回の積分は「∫1/y・(dy/dt) dt」であり、「∫1/y・dt」とは違うので、logey+C’’になるのはおかしいと思うのです。 教科書が間違っている可能性は低いと思います。 どうしても理解できませんので、皆様のアドバイスをいただければ幸いです。 よろしくお願いします<m(__)m>

  • 「高校数学」置換積分法の公式について

    x=g(t)のときの置換積分法の公式∫f(x)dx=∫f(g(t))g'(t)dt についてなんですが、 dx/dt=g'(t)だから dx=g'(t)dtよりこれを左辺のdxに代入して 機械的に右辺の式になると考えるのは間違いでしょうか? 教科書では y=(左辺)として dy/dt=(dy/dx)(dx/dt)=f(g(t))g'(t)だから両辺tで積分して 右辺を作ってましたが・・・

  • 微分積分について(一階線形微分方程式)

    この問題の解き方について教えて下さい。 問、曲線y = f(x)上の任意の点P(x , y)における    接線の傾きがPのx座標とy座標の和に等しい。    このような曲線のうち原点を通るものの方程式を答えよ。   Ans. y=e^x - x -1 (自分の解いたやりかた(答えがどうしても一致しないので間違っているところを教えて下さい。)) dy / dx = x + y・・・(1) (dy / dx) - y = x 斉次微分方程式(dy / dx) - y = 0を解く y' = y 変数分離で解くと y = C e^x (Cは積分定数) Cをxの関数uと置き換えて y = u e^x y' = u' e^x + u e^x これを(1)へ代入 u' e^x = x u' = x e^(-x) ∫du = ∫e^(-x) dx これを解くと u= -x e^(-x) + e^(-x) - C y=ue^x=-x + 1 - Ce^x 条件より C=1 ∴y= 1 - e^x + 1

  • 変数を置換える微分方程式について

    お世話になります、 以下の考え方で問題がないかご教授願います。 (どうして大学のテキストは解答がついてないのでしょうか、成否の確認ができません…) 問題:y´=y^2/(xy-x^2) 最初は変数分離で一瞬で解けると思ったのですが、分母がネックになりました。 右辺を1変数に置き換えられないか考えて、分子分母に1/(xy)を乗じます。 y^2/(xy-x^2)=(y/x)/(1-x/y) において、 z=(y/x)としてz^(-1)=(x/y),dz/dy=1/xよりdy=x dz ∴ z/(1-z^(-1))=(x・dz)/dx 両辺を逆数化して (1-z^(-1))/z=dx/(x・dz) ∫(1-z^(-1))/z dz=∫1/x dx    log|z|+z^(-1)+C=log|x| <Cは積分定数です> つまり、log x=log z+z^(-1)+C log x=log z+log e^z^(-1)+log e^C log x=log{ze^z^(-1)e^C} x=ze^z^(-1)C´ <e^C=C´とする> x=(y/x)e^(x/y)C´ 一応、微分は無くなったので正解となるのでしょうか? お世話になります。