• ベストアンサー
  • すぐに回答を!

微分積分について(一階線形微分方程式)

この問題の解き方について教えて下さい。 問、曲線y = f(x)上の任意の点P(x , y)における    接線の傾きがPのx座標とy座標の和に等しい。    このような曲線のうち原点を通るものの方程式を答えよ。   Ans. y=e^x - x -1 (自分の解いたやりかた(答えがどうしても一致しないので間違っているところを教えて下さい。)) dy / dx = x + y・・・(1) (dy / dx) - y = x 斉次微分方程式(dy / dx) - y = 0を解く y' = y 変数分離で解くと y = C e^x (Cは積分定数) Cをxの関数uと置き換えて y = u e^x y' = u' e^x + u e^x これを(1)へ代入 u' e^x = x u' = x e^(-x) ∫du = ∫e^(-x) dx これを解くと u= -x e^(-x) + e^(-x) - C y=ue^x=-x + 1 - Ce^x 条件より C=1 ∴y= 1 - e^x + 1

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数234
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

下から6行目が∫e^(-x)dxではなく∫xe^(-x)dxだと思います. 部分積分の公式を使ってやると ∫du = ∫xe^(-x)dx =∫x(-e^(-x))'dx =-xe^(-x)-∫(-e^(-x))dx =-xe^(-x)+(-e^(-x)) =-xe^(-x)-e^(-x) ∴u = -xe^(-x)-e^(-x) + C y = ue^x =-x-1+Ce^x 条件はx=0のときy=0なので 0 = -0 -1 +C が成り立つから C = 1 ∴ y = e^x -x -1

共感・感謝の気持ちを伝えよう!

質問者からのお礼

丁寧に教えていただきありがとうございます。

関連するQ&A

  • (x-c)^2+y^2=c^2に直交する曲線族の微分方程式で

    初学者です。 [問] x-y平面上の(原点でy軸に接する)円(x-c)^2+y^2=c^2の族Fを考える。 このFに直交する曲線族Gによって満足する微分方程式を求めよ。 を解いています。 [解] Fの接線の傾きを求めると (x-c)^2+y^2=c^2を微分して 2(x-c)+2y(dy/dx)=0 dy/dx=(c-x)/y …(*) で FにGが直交するのだから Gの接線の傾きは(c-x)/yの逆数の-1倍なので y/(x-c) よって、Gについての微分方程式は dy/dx=y/(x-c) となると思うのですが答えには (*)にc=(x^2+y^2)/2xを代入してます。 どうしてこれを代入しないといけないのでしょうか? 私のは間違いなのでしょうか?

  • 微分方程式 1階線形

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 という問題なのですが一応解いてみたのですが合っているのかいまいち分かりません。 間違っている箇所があれば教えてください。 よろしくお願いします。 ↓ y’/y^3-2/x・1/y^2=x 1/y^2=uとおくと、 du/dx=du/dy・dy/dx du/dx=(-2/y^3)・y’ du/dx=-2y’/y^3 となりますから、 y’/y^3=-1/2 du/dx よって、元式に代入すると、 -1/2 du/dx-2/x u=x …(1) 定数変化法を用いる。斉次形の解をまず求める -1/2 du/dx-2/x u=0 du/dx=-4u/x ∫du/u=-4∫dx/x ln|u|=-4ln|x|+C1 u=±e^(-4ln|x|+C1) u=Cx^(-4) Cがxの関数であったものとして、非斉次形の解を求める。 C=p(pはxの関数)とおくと、 du/dx=p’x^(-4)-4px^(-5) ですから、(1)にそれぞれ代入して、 -1/2 {p’x^(-4)-4px^(-5)}-2/x px^(-4)=x -1/2 p’x^(-4)+2px^(-5)-2px^(-5)=x -1/2 dp/dx=x^5 ∫dp=-2∫x^5 dx p=-1/3 x^6+C 従って、 u=(-1/3 x^6+C)x^(-4) u=-1/3 x^2+Cx^(-4) となるから、1/y^2=uより、 1/y^2=-1/3 x^2+Cx^(-4)

  • 線形微分方程式について

    微分方程式の分類に関して、 線形…y(x)及びその微分について一次までのもの。 と手元の資料には書いてるんですが、 これはy(x)もしくはdy(x)/dx のみを含んでいる、ということですか? 調べてみると、斉次2階微分方程式なるものもあるようで困っています。(斉次ということは線形ですよね?2次が含まれていていいんでしょうか?)

  • 微分方程式の途中の変形が分かりません。

    変数分離形の微分方程式 (x^2*y-x^2)dy=(x*y^2+y^2)dx を解くのですが、 ∫(1/y-1/y^2)dy=∫(1/x-1/x^2)dx と変形し、 log|y|+1/y=log|x|-1/x+C (C:積分定数) まで、解きました。 これはy=○○の形にどうやって変形すればよいのでしょう? 何を使うなどのヒントでいいので、よろしくお願いします。

  • 微積(微分方程式)

    解き方、考え方、解答を教えてください。 問、曲線y=f(x)上の任意の点P(x,y)における接線の傾きが、その点Pのx座標とy座標の差に 等しいという。この問題を満たす微分方程式をつくれ。 点P(x ,y)における接線の方程式を Y - y = y' (X - x)を立てたのですが、このあと どのように解いていくかがわかりません。

  • 微分方程式  積分方程式 について

    微分方程式y'=x+1について、 解は、 dy/dx=x+1 変数分離を行って、 dy=(x+1)dx 両辺を積分すると、 ∫dy=∫(x+1)dx・・・(※) よって、 y=1/2x^2+x+C (※)の部分ですが、これは積分方程式と 言っていいのでしょうか? 積分方程式って、何なんでしょうか? Wikipediaを見たのですが、わかりませんでした・・・ 以上、ご回答よろしくお願い致します。

  • 未定係数法は一階の線形微分方程式にも使えるのでしょうか? 

    未定係数法は一階の線形微分方程式にも使えるのでしょうか? 一階の線形微分方程式の解き方は dy/dt + p(t)y = g(t) のとき e^∫p(t)dt を両辺にかけて そのあとで両辺を積分してyについて解く と習いました。 そして、未定係数法は2階の線形微分方程式を解く方法の一つとして、 習いました。 ここで疑問に思ったのが、 この未定係数法は一階の線形微分方程式にも使えるのでしょうか? だとしたら下のような手順でよいのでしょうか? 同次式: dy/dt + p(t)y = 0 の一般解を求める (積分定数が残る) 非同次式: dy/dt + p(t)y = g(t) の特殊解を求める (積分定数はない) yの一般解 = 同次式の一般解 + 特殊解 よろしくお願いします。

  • 微分方程式の同次形

    微分方程式の同次形って (y/x)の形をつくって、そこから y/x=u とおいて計算してくじゃないですか。 その後に、dy/dx=u+x(du/dx) となるのはなぜなのでしょうか? dy/dx=uとなるなら納得するんですが、その後に加わっているx(du/dx)はどういった考え方をすれば出てくるのでしょうか? dy/dx=u+x(du/dx)から考えてみても、y=uxにならないんですよね。 考え方を教えてください。

  • 微分方程式の問題です

    微分方程式についての質問です。 dy/dx=y(2x^3-y^3)/((x)(x^3-2y^3)) を解けという問題です。 y = xu と置いて変数分離したんですが、そこでつまずいてしまいました。 途中過程を含めて解答お願いします。

  • 微分方程式を解いていただける方いませんか><

    Aを定数として、以下の微分方程式を解いていただけると嬉しいです!!どうしても変数分離できず、困っています! dy/dx=-y+(y^2+Ax)^0.5 どうやって導いたかも教えていただけるとさらにうれしいです!よろしくお願いします!