• ベストアンサー
  • すぐに回答を!

電磁気学

半径a,b(a<b)の同心導体球殻AおよびBがある。A球殻内は誘電率ε1の誘電体でAB間は誘電率ε2の誘電体で満たされ、B球殻の外側は真空(誘電率ε0)である。球の中心に点電荷+Q1をおきBに電荷+Q2を与えたのちABを細い導線でつないだ際の 球の中心からの距離をrとして (1)A球殻内の電束密度Daおよび電界Ea (2)AB間の電束密度Dabおよび電界Eab (3)B球殻外における電束密度Dbおよび電界Eb (4)Aの電位Va それぞれの解法につきまして、ご教示賜りたく 宜しくお願い申し上げます。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数838
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • foobar
  • ベストアンサー率44% (1423/3185)

1. ガウスの法則より、Da=Q1/(4πr^2) Ea=Da/ε1 2. ABを導線でつないだので等電位から、AB間ではEab=0 3. ガウスの法則より Db=(Q1+Q2)/(4πr^2) 4. 3.の結果からBの電位Vbを計算  AとBは等電位 という手順で計算できそうに思います。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 電磁気学の問題です。

    中心を共通する半径a、半径bの球殻A、球殻Bがある(b>a)。AとBとの間には誘電率εの誘電体を挿入し、ほかは真空である。次の問に答えよ。ただし、誘電体は等方的で線形な物質であるとする。 (I)球の中心に点電荷qを置き、A、BにそれぞれQA、QBの電荷が一様に帯電しているとし、球殻の中心からの距離をrとして、電束密度D(r)、電場E(r)を求めよ。 (II)A、Bの電位VA、VBを無限遠方を基準として計算せよ。 (III)AB間の静電容量を求めよ。 このような問題です。 (I)はそれぞれの電場(q、A、B)を求めて足し合わせようと考えているのですが、電場の求め方が分かりません。 (II)は、E=-gradVから求めようと思っていますが、Eがわからないことにはどうしようもできません。 (III)はQ=CVに代入するんでしょうか? 以上です。よろしくお願いします。

  • 電磁気学に関してです

    某大学院試験の問題なのですが 解答がないため困っています 半径2.0cmの帯電した導体球が真空中にある。 導体球の表面は比誘電率が2.0の厚さ1.0cmの伝導体で覆われている。 導体球の中心から距離10cmの位置の電界強度は1.0*10^2V/mであった。 解答に当たっては単位も明記すること。また、真空の誘電率はε0[F/m]としてよい 1 導体表面の面電荷密度を求めよ 2 導体表面の単位面積あたりに働く力の大きさを求めよ 3 導体の電位を求めよ 4 誘電体の外表面の分極面電荷密度を求めよ 5 静電誘導を求めよ という問題です。 どなたか分かる方がございましたら 教えていただけませんか?? よろしくお願いいたします!!!

  • 電磁気学

    真空中(誘電率ε0)に面積Sの2枚の導体板A,Bがある。導体板間の距離はd(t)+d1である。ただし、d(t)=d0+asinωtであり、d0,a,ωは非負の定数でa<d0とする。導体板Bは厚みd1,誘電率ε1(ε0<ε1)の誘電体で覆われている。また誘電体表面には面密度ρの正の真電荷が一様に固定されている。導体板AとBとは導線で結ばれておりこの導線は接地されている。導体板Aをz軸方向に振動させ、導体板Bとの距離を変化させると電流が生じる。系のインダクタンス、抵抗、および端効果は無視して、以下の問いに答えよ。ただし(1)から(4)までは、導体板A,Bは静止しているものとする(a=0) (1)導体板間における電束密度Dの大きさ電界Eの大きさを求めよ。 (2)導体板Aと導体板B上の電荷量QA,QBならびにその総和QA+QBをそれぞれもとめよ。 という問題でいま(2)でとまっていて (1)はガウスの法則を使いDは1/2*ρでありEはこれをそれぞれ誘電率でわったもの (2)は先ほど接地について質問させてもらったのですが、接地とは電位が0となり電荷が流れていってしまうものではないのですか? そうすると答えはすべて0になってしまい、変なのでちがいそうです。 これはどのように考えればいいのでしょうか 考え方を教えていただけると助かります!

  • 電磁気学について

    電磁気の問題が分かりません どなたか教えていただけませんか? 半径2.0cmの帯電した導体球が真空中にある。 導体球の表面は比誘電率が2.0の厚さ1.0cmの伝導体で覆われている。 導体球の中心から距離10cmの位置の電界強度は1.0*10^2V/mであった。 解答に当たっては単位も明記すること。また、真空の誘電率はε0[F/m]としてよい 1 導体表面の面電荷密度を求めよ 2 導体表面の単位面積あたりに働く力の大きさを求めよ 3 導体の電位を求めよ 4 誘電体の外表面の分極面電荷密度を求めよ 5 静電誘導を求めよ という問題です。 1は E=δ/ε0 に代入して    δ=200ε0 2は F=(1/2ε0)*δ^2 に代入して2*10^4 3 以降が自信がないという状況です どなたか分かる方がございましたら 教えていただけませんか?? よろしくお願いいたします!!!

  • 電荷面密度

    誘電率がε1の誘電体のなかに 半径aの導体球が電荷Qを持っているとき。 中心からrの距離での誘電体内での電束密度D の大きさがその距離での電界Eを用いて、 D=ε1・E となる。ところまではわかるのですが、 次に、導体表面の電荷面密度は導体表面上の電束密度の 法線成分に等しいので、導体表面上の電荷面密度は? というところの電荷面密度が求められません。 その前に「導体表面の電荷面密度は導体表面上の電束密度の 法線成分に等しいので」という文章がどういう意味なのか わかりません。 どなたかわかる方いらっしゃいましたらお願いします。

  • 電磁気学に関する問題です

    半径r_1(rに下付きで1、以後下付きの文字や数字の前には_をつける)[m]、誘電率ε_1[F/m]の誘電体球と、内半径r_2[m]、外半径r_3[m]の中空導体球が、ともに座標原点を中心として置かれている。誘電体球は電化密度ρ[C/m^3]で一様に帯電しており、中空導体球は帯電していないものとする。自由空間の誘電率をε_0[F/m]として、以下の問いに答えよ。 (図が書けないので補足しておきます。r_1<r_2<r_3となっており、中空導体球の中に誘電体球があるようなイメージです。) 1.中空導体球の内側及び外側表面には電荷が発生する。それぞれの面電荷密度σ_i[C/m^2]およびσ_o[C/m^2]を求めよ。 2.原点からr[m]の点における外向き電界強度E(r)[V/m]を、0<r<r_1、r_1<r<r_2、r_2<r<r_3、r_3<rのそれぞれの場合について数式で表せ。 3.次に中空導体球を抵抗R[Ω]を介して接地した。このとき、接地した瞬間から測った時刻t[s]に対して、抵抗を流れる電流i(t)[A]が i(t)=i(0)exp(-αt) (t≧0) となることを導け。ただしαはある定数であり、大地の電位は常に0[V]である。 導体球と誘電体球を、どのように同時に考えたらいいのか分からず、 困っています。 中空導体球の中に導体球がある場合などについては、参考書で見かけたのですが…。 かなり図書館で色々な本を見てみたのですが、だいたいどの本も 誘電体と導体の話が別々に書いてあります。 中空導体球の中に誘電体球、このような場合どのように考えたらいいのでしょうか。 中空導体球と、誘電体球の相互関係はないのでしょうか。 ないのなら、中空導体球の問題1.は中空導体球だけで考え、2.は・・・ r_1<r<r_2のときは・・・ 混乱してきました。 どなたか、ヒントまたは助力、お願いします。。。

  • 大学の電磁気学についての問題です!!

    大学の電磁気学についての問題です!! 半径a<bの同心導体球殻A,Bがあります。 Aに電荷+q、Bに電荷-qを与えました。 (1)A,B間の任意の点r(ベクトル)(a<r<b)における電場E(r)を求めなさい。 (2)同心球をコンデンサーとみるときの電気容量Cを求めなさい。 どうかおねがいします!!!!!同心導体球殻の特徴もできれば教えてください!

  • 電磁気学の院試過去問

    院試は過去問の解答がなく、困っております。 下記の問題は参考書等を調べましたが、どう解いたらいいかわからなかったので、質問させてください。 (1)上下方向に十分長い、半径aの直円柱の表面に一様な磁極を持つ電磁石がある。対向磁極は半径b(>a)で同軸上外側にある。この半径aの円柱にすきま、摩擦を無視できる質量mの細い導体リングをはめる。導体リングを離すと、重力mgにより落下し始め、ある時間の後、一定速度vになった。導体リングの抵抗はRである。導体リングに流れている電流による磁界の影響は無視できるとする。 (a)半径aの磁極面の磁束密度Bを求めよ。 (b)導体リングに流れている電流Iを求めよ。 (c)導体リングのジュール発熱率を求めよ。 (d)何のエネルギーがジュール発熱率に使われているか これは(a)からわかりませんでした。導体リングによる磁束変化から求めるのでしょうか? (2)半径aおよびb(a<b)の同心の厚さの極めて薄い導体球殻がある。 (a)両球殻に電荷がない状態で、両球殻を銅線で結んだ後、内球殻に電荷Qを与える。内球殻、外球殻に電荷Qはどのように分布するか。 (b)外球殻を銅線で接地した状態で、同心球殻の中心に向かって外部から点電荷qが速度vでまっすぐに近づいてくる。このとき、銅線に流れる電流を求めよ。 (c)両球殻の間の領域が全て導体で満たされたとする。これに内側から外側に向かい小さな穴を貫通させ、点電荷qを球殻の中心から貫通穴を通して、無限遠点まで運んだ。このとき、必要となる仕事を求めよ。なお導体球殻は接地されているとする。 これもよくわかりませんでした。(a)は内と外の電位が等しくなることから求めると思うのですが、外球にQが全て分布するのでしょうか?

  • 電磁気学

    一辺の長さが1mの正三角形の各頂点にそれぞれ1[μC]の正電荷を置く。この時の各電荷に働く力の大きさはいくらか、また三角形の中心と各辺の中点に働く電界の大きさと向きを示せ。ただし空間中の誘電率を8.854×10^-12[F/m],また√3=1.732,π=3.142とする この問題の答えを教えてください

  • 誘電体と電界

    今、電磁気を勉強していまして、疑問に思ったので質問させてください。 一様な電荷を持った物体があるとして、その周りに誘電体で、その物体を包んでしまった場合、その誘電体内部の電界と外部の電界はどのように変化するのでしょうか? これでは抽象的ですので、例えば・・・ 一様な電荷Qを持った半径aの球があり、その周りに厚さdの誘電体(誘電率εr)で包んだ場合、球内部では電界         E=Q/4π(ε0)r^2  (ε0:真空中の誘電率) となるのはわかりますが、誘電体内部、外部では電界はどうなるかということです。 よろしくお願いいたします。