- ベストアンサー
- 困ってます
導関数の問題
以下のような問題を解いてみましたが、自信がありません。 この解き方でいいのでしょうか? もし、おかしい点があればご指導おねがいします。 【問題】 関数 f(x)=∫{0→x}(t^2+1)^10 dt の導関数を求めよ。 【自分の解答】 一般的に、関数g(x)の原始関数をG(x)とした場合、 f(x)=∫{a→x}{g(t)} dt =[G(x)]{a→x}=G(x)-G(a) f(x)=(dG/dx)=g(x) とあらわすことができる。 ゆえに、関数 f(x)=∫{0→x}(t^2+1)^10 dt に t=xを代入し、導関数は f(x)=(t^2+1)^10 となる。
- niinii22
- お礼率94% (130/138)
- 回答数2
- 閲覧数35
- ありがとう数2
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.2
- info22
- ベストアンサー率55% (2225/4034)
#1です。 訂正です。 A#1でa=0と置き換えて下さい。 F(x)=∫{0→x}{g(t)} dt =[G(t)]{0→x}=G(x)-G(0)
関連するQ&A
- 定積分で表された関数の導関数の求め方について
定積分で表された関数の導関数の求め方について、 f(x)=∫[0→x](t^ 2 + 1)^10 dt の導関数を求める場合 下記の方法、回答で合っているかご教授頂けますか。 まず、f(x)=∫[0→x](t^ 2 + 1)^10 dt =[1 / 11 (t^2 + 1)]^11(0→x) =1 / 11 (x^2 + 1)^11 ゆえに、導関数は f´(x)=(x^2 + 1)^10 合っていますでしょうか? よろしくお願いします。
- ベストアンサー
- 数学・算数
- 指数が含まれる第5次導関数の問題の解き方
以下の問題を自分で解答してみましたが、 ぜんぜん自信がありません。 わかる方、いらっしゃいましたらご指導お願いします。 【問題】 関数f(x)=xe^(5x)の第5次(階)導関数f^(5)(x)を求めよ。 【解答】 1次導関数:5e^(4x) 2次導関数:5e^(3x) 3次導関数:5e^(2x) 4次導関数:5e^(1x) 5次導関数:5e^(0)=5・1 よって、f^(5)(x)=5 以上、よろしくお願いします。
- ベストアンサー
- 数学・算数
- 第5次導関数の問題です
この解き方であっているか、わかる方よろしくお願いします。 関数f(x)=x^5+2mp第5次導関数f^(5)(x)を求めよ。 (f^(5)(x)の(5)の部分だけが指数です。) 答え 1次導関数:5x^4 2次導関数:20x^3 3次導関数:60x^2 4次導関数:120x 5次導関数:120 よって、f^(5)(x)=120
- ベストアンサー
- 数学・算数
その他の回答 (1)
- 回答No.1
- info22
- ベストアンサー率55% (2225/4034)
関数g(t)=(t^2+1)^10の原始関数をG(t)とした場合、 F(x)=∫{a→x}{g(t)} dt =[G(t)]{a→x}=G(x)-G(a) f(x)=dF(x)/dx =dG(x)/dx=g(x)=(x^2+1)^10 のような解答になるかと思います。
質問者からのお礼
ご指導ありがとうございます。
関連するQ&A
- 数III第2次導関数と極値
数III第2次導関数と極値 次の関数の極値を、第2次導関数を利用して求めよ。 f(x)=x+2sinx (0≦x≦2π) この問題の解き方がわかりません。 解答よろしくお願いします。
- ベストアンサー
- 数学・算数
- 全微分で2階導関数を求めるについて
Z=f(X,Y),X=φ(t)Y=Ψ(t)がC2級のときtの関数Z=f(φ(t),Ψ(t))の2階導関数を求める問題の解き方が分かりません。 1階導関数は、全微分の公式を用いてすぐ求めることができるのですが、2階導関数の場合、d/dtを両辺に掛けたとき1階導関数を求めたときに式に現れる∂z/∂xに対してどのように式を変形していけばいいのかわかりません。回答よろしくお願いします。
- ベストアンサー
- 数学・算数
- 指数関数の導関数の公式
「指数関数 x=e^y は対数関数 y=logx の逆関数だから、逆関数の導関数の公式と対数関数の導関数の公式 dy/dx=1/x を用いるとdx/dy=1/(dy/dx)=1/(1/x)=x=e^yとなり、指数関数の導関数の公式(e^y)'=e^yが得られる、○か×か」という問題がわからないのですが、教えて下さい!
- ベストアンサー
- 数学・算数
- 合成関数の導関数を求める問題です。
解き方が分からない問題が3つあるので教えてください>< 合成関数の導関数を求める問題です。 ※ f(x)は微分可能とする。 (1){ f(sin x) }^n (2) f(sin^n x) (3) log(f(5x-1)) 問題の画像も添付しておきます。
- ベストアンサー
- 数学・算数
- 次の関数の導関数を求めよ。
次の関数の導関数を求めよ。 f(x)=3x g(x)=log(2x2+x+1) h(x)=sin-12x 次の(1)と(2)を求めよ。 ∫x/(x^2-4)dx lim┬(x→0)??2x/(e^x-1)? 関数f(x)=1/(1-3x)に関する次の(1)と(2)に答えよ。 各自然数nに対して、関数f(x)の第n次関数f(n)(x)を求めよ。 関数f(x)のx=0におけるテイラー展開(よって、マクローリン展開)を求めよ。
- ベストアンサー
- 数学・算数
- 2変数関数の2次導関数のことです。
2回連続微分可能で、z=f(x,y),x=x(t),y=y(t)の関係があって、このときのzのtに関する2次導関数を求めるという問題なんですが、1次の導関数は dz/dt=(∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt) だと思うんですが、2次の場合は d^2z/dt^2=(d/dt)((∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt)) となって、それぞれの項を積の微分法で解けばいいのでしょうか?できたらその形も教えて下さい。お願いします。
- ベストアンサー
- 数学・算数
質問者からのお礼
たびたびのご指導ありがとうございます。 大変よくわかりました。ありがとうございました。