• 締切済み

ベクトル空間

(1)零ベクトル0を含む、ベクトル空間V={0}の基底は何か?? という問題で、自分なりに本などを調べました。 そしたら、このベクトル空間の基底は『空集合』だということがわかりました。 しかし、どうして『空集合』になるのかがやはりよくわからないのです。 どうか、助言をお願いします。 (2)(e1,e2)も(f1,f2,f3)も同時にVの基底となることはできるか?? という問題についても自分なりに考えました。 f1かf2かf3のどれかひとつを0とすれば(f1,f2,f3)も2次元とみなすことができて、(e1,e2)と同時に基底となれるのではないか?と考えました。 この考え方は間違っていますか? どうか力になってください。 おねがいします。

みんなの回答

noname#221368
noname#221368
回答No.2

 まず(1)について言います。(1)は、「基底の定義さえわかれば、当然わかるはずだ」というのが、#1さんの心だと思います。  意味は了解できなくても、まず「習った基底の定義」を書いてみましょうよ。このように基本的な事は、どのような状況下にあるのかわからないと、応えようがありません。とにかくまず、自分の知っている事を書きましょう(教科書の引き写しだって、かまいません)。  (2)は、(1)と「基底の定義」さえクリアできれば、やはりかなり自明になると思います。

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

>どうか、助言をお願いします。 「基底」の定義を補足にどうぞ。 >f1かf2かf3のどれかひとつを0とすれば(f1,f2,f3)も2次元とみなすことができて 意味不明です。「どれかひとつを 0 とする」とは?

関連するQ&A

  • ベクトルが3次元実ベクトル空間を動くとき

    以下の行列Aについて、すべての問いに答えなさい。   |1 4 0 | A = |1 0 2 |   |0 2 -2 | (1) 行列Aの固有値を求めなさい。 (2) 行列Aの各列をベクトルa1,a2,a3で以下のように表す。    A=(a1,a2,a3) これらの3個のベクトルの従属関係を式で示しなさい。 (3) ベクトルxが3次元実ベクトル空間(線型空間)V全体を動くとき、これによってつくられる点の集合を    W1={Ax|x∈V} とする。この集合がつくる実ベクトル空間の次元を求めなさい。 (4) ベクトルpをp=t(1,2,1)とする。ベクトルxがx・p=0となるような3次元実ベクトル空間Vを動くとき、xがどのような図形を描くか答えなさい。なお、t()は転置を表し、x・pはxとpの内積を表す。 (5) (4)のようにxが動くとき、集合    W2={Ax|x∈V,x・a=0} がつくる実ベクトル空間の次元を求めなさい。 という問題があるのですが、 (1):λ1=3, λ2=0, λ3=-3 (2):略 (1),(2)は合ってる自信があります。 (3)   |1 4 0 |   |1 4 0 | A = |1 0 2 | = |0 -4 2 |   |0 2 -2 |   |0 0 0 | これはrank=2となり、xをかけてもrankは変わらないので、 次元は2 (3)は次元は合ってる気がするのですが、答え方が間違ってるような気がします。 (4),(5)の解き方が分かりません。 (4)はx・p=0なので直交することは分かるのですが、これをどう使うかが分かりません。 (5)は(4)が解けないと解けないのですが、(4)が解けたとしてもaというよく分からないの出てきてて、解けなくなってしまいそうです。 どなたか(3),(4),(5)を解いて下さる方いらっしゃいませんか?

  • v1=(0,1,1),v2=(1,1,0)で生成される実ベクトル空間R

    v1=(0,1,1),v2=(1,1,0)で生成される実ベクトル空間R3の2次元部分空間の正規直交基底を求めよ。 という問題なのですが、「Rnのm次元部分空間」(ここでは、R3の2次元部分空間)はどのようにもとめればいいのでしょうか。また、問題の詳細な解き方を教えてください。 よろしくお願いします。

  • ベクトル空間(抽象論)

    また質問させていただきます。今高校3年ですが、進路が決まった ために先の勉強を独りでやっています。部分空間の話あたりまで なんとか読み進めているのですが、ちょっとわからない問題に 出くわしました。「解答略」といかめしい記述のある参考書で私 には重い壁です。 問題: 正の実数の集合R={x∈R|x>0} がR上のベクトル空間となるように和とスカラー倍を定義しなさい。 (ただし公理を示す必要はなく、零ベクトルと、x∈Rの逆ベクトル が何かを証明なしで答えてほしい)さらにそのベクトル空間の次元と 1組の基底を証明も交えて答えよ。 というものでした。次元と基底の意味はぼんやりわかっている程度で、 それぞれ、「基底を構成するベクトルの個数」と、「一次独立かつ 生成系であるベクトルの組」ですよね。上記の問題があまりにも抽象 的で、定義せよと言われても書くとすればどうすればよいのかという ことなのです。 特にこれができなければ先へ進めないということでもないかもしれま せんが、もやもやしてスッキリしません。どなたか具体的にご教授願 います。書いていただけると問題の意味がわかるかもしれないので。 お願い致します。

  • 部分ベクトル空間であることの証明

    Vをベクトル空間、WをVの空でない部分集合とする。 集合Wが次の2条件(1)(2)を満たせば、Wはベクトル空間(加法とスカラー倍はVのと同じものを使う)になることを示せ。 (1)Wの任意の元a,bに対して、a+bもWの元となる (2)Kの任意の元k、Wの任意の元aに対して、kaはWの元となる この証明なのですが、以下のように示しました。 (∵) WがVの部分ベクトル空間であるには、 (1)Wが空集合でない (2)Wがベクトル空間の性質を全て満たす (3)Wが加法、スカラー倍について閉じている の3つである。 (1)は題意より明らか。 (2)は、Vがベクトル空間で、WはVの部分集合であることから、Wも当然ベクトル空間の性質を満たす。 したがって、残りの(3)のみを満たしていれば良い。 Q.E.D こんな感じでよろしいでしょうか? 稚拙な部分等ありましたらご指摘お願いします。

  • 線形空間は必ず基底を持つ(有限次元)

     先日某所で、明らかに有限次元のベクトル空間に関すると思える話に出会い、   「線形空間は必ず基底を持つ!({0}は除く)」 とやってしまいました。その時、   「持つためには、選択公理が必要」 という指摘を頂いて、「有限次元では(選択公理不要)」と加えたのですが「これって本当にそうなのか?」とふと思い、質問しています。以下、有限次元に限定します。 (1)今までは・・・  今までは、こう思って来ました。「次元の等しい線形空間は、みな同型」という事から、要は数ベクトル空間について、基底を持つかもたないか、調べれば良いはずだと。  n次の(n次元とは言いませんの)数ベクトル全体をVをすれば、Vには 自然な生成系、  B={(δi1),(δi2),・・・,(δin)}(δijは、クロネッカーのデルタ) があり、Bが生成系である事はすぐわかり、(δij)らが互いに独立である事もすぐわかり、さらに任意のv∈VがBのベクトルに従属なのもすぐわかるから、n次の数ベクトル全体Vは、長さがnの基底を持ちn次元で、有限次元線形空間は、選択公理抜きで必ず基底を持つと。 (2)定義に戻ってみると・・・  ところが基底の定義は、   「Vから取り出せる、独立なベクトルの集合で、最大本数を持つもの」 となると思います。ここでは有限次元に限定しているので、最大本数と書きました。  この定義に忠実に従って基底の有無を調べるとしたら、Vの部分集合全てを調べなければならない気がします。このような操作のためには、やっぱり選択公理が必要でないのか?、と突然気づきました。有限次元であっても、Vに含まれるベクトルは、無数にあるので・・・。  (1)と(2)は、本質的に同じでなければならないと思います。そうすると(1)においても、どこかで選択公理のお世話になっているんでしょうか?。

  • 直交補空間などについて

    どうしても分からない問題がありますのでよろしくお願いします。 もちろんどちらか片方でも構いませんので、よろしくお願いします。 行列Aがあって、Aの成分は第一行が[3/4,√6/4,1/4]第二行が[-√6/4,1/2,√6/4]第三行が[1/4,-√6/4,3/4]である。 1、Aの固有値1に対する固有空間Wの大きさ1のベクトルからなる基底を求めよ。 2、三次元ベクトル空間におけるWの直交補空間Vの正規直交基底{v1,v2}を求めよ。

  • 行列のなすベクトル空間?

    2次元実行列のなすベクトル空間をM2とし M2 = {A = [a11 a12, a21 a22] : aij ∈ R , (i,j =1,2)} (Aは2*2行列です、Rはベクトル表記かもしれません) 以下の2*2行列 E1 = | 1 1 | | 0 0 | E2= | 0 0 | | 1 1 | E3= | 1 0 | | 0 1 | E4= | 0 1 | | 1 1 | がM2の基底であることを示したいのですが、行列を成分とするベクトル空間は参考書では見つけられませんでした。 ベクトルが成分であれば線形独立を示せばよいと思いますが、行列の場合はどうすればよいのでしょうか?

  • ベクトル

    e1=(1,0,0,-1),e_2=(0,1,0,-1),e_3=(0,0,1,-1)が基底の4次元線形空間の元で、0と1の成分だけからなるベクトルはどう求めたらいいですか?

  • 部分ベクトル空間について

    Vを3次多項式全体の集合 V={ax^3+bx^2+cx+d | a,b,c,d∈R} とする. 次の(1),(2),(3)のようなVの部分集合について,Vの部分ベクトル空間となるものはどれか? (1)W={ax^3+bx^2+cx+d | a,b,c,d≧0} (2)W={f'(x) | f(x)∈V} (3)W={f(x)∈V | f'(x)=0} 自分でやってみたところどれも部分ベクトル空間になりました. 合っているでしょうか?

  • ベクトル空間 次元 について

    前回質問(数ベクトル空間 ベクトル空間)させて頂いた内容です。 http://okwave.jp/qa/q8631000.html#answer 前回の質問内容を整理してわからなかった点を再度質問させて頂きます。 ベクトル空間の次元についてですが、以下のように理解しました。 Vはベクトル空間であるとします。 x,y,z∈Vについて、 (1)x,y,zのうち2つのベクトルが0なら1次元ベクトル空間 (2)x,y,zのうち1つのベクトルが0なら2次元ベクトル空間 (3)x,y,zがどれも0ベクトルでなければ3次元ベクトル空間 と理解しました。 R^2は2次元ベクトル空間 R^3は3次元ベクトル空間 R^nはn次元ベクトル空間 という説明がウェブ上で多々ありますが、 これは、ベクトル空間の「成分の数(項数)」であって次元とは関係 ないと理解しました。 ここまでで間違いありますでしょうか? 間違いがあればご指摘よろしくお願い致します。 *****以下、質問内容***** x,y,z∈Vについて、 (1)x,y,zのうち2つのベクトルが0なら1次元ベクトル空間 (2)x,y,zのうち1つのベクトルが0なら2次元ベクトル空間 (3)x,y,zがどれも0ベクトルでなければ3次元ベクトル空間 ですが、 (1)、(2)、(3)はいずれもR^3の部分空間とのことなのですが、この点がよくわかりません・・・ 私のイメージなのですが、 (1)⊂(2)⊂(3)のイメージがあるのですが、これは大きな間違いでしょうか? 3次元ベクトル空間の部分空間は2次元ベクトル空間と1次元ベクトル空間 と言ったイメージなのですが・・・ R^3の部分空間であるとは、「成分が3つのベクトル空間」の部分空間と言う事で、 次元とは無関係ですよね? 以上、ご回答よろしくお願い致します。