• 締切済み
  • すぐに回答を!

途中まで解けたけどその後が・・・

0°≦θ<360°の時、y=2sinθcosθ-2sinθ-2cosθ-3とする。 x=sinθ+cosθとおくと、yはxの関数アとなる。 x=イsin(θ+ウ°)であるから、xの値の範囲はエである。 したがって、yはθ=オ°のとき、最大値カをとる。また、yの最小値はキである。 ア~キまでを答えよ。 という問題なんですが、アは、y=x^2-2x-4と求まるのですが、 その後がわかりません。解説しながら丁寧に教えてもらえるとうれしいです。 お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数241
  • ありがとう数0

みんなの回答

  • 回答No.3

こんにちは。 >0°≦θ<360°の時、y=2sinθcosθ-2sinθ-2cosθ-3とする。 x=sinθ+cosθとおくと、yはxの関数アとなる。 x=イsin(θ+ウ°)であるから、xの値の範囲はエである。 したがって、yはθ=オ°のとき、最大値カをとる。また、yの最小値はキである。 アは、mario-matuzyunさんの答えのとおりですね。 x=sinθ+cosθとおくと、x^2=(sinθ+cosθ)^2=sin^2θ+cos^2θ+2sinθcosθとなるので sin^2θ+cos^2θ=1 であることより、2sinθcosθ=x^2-1 とおけます。 y=2sinθcosθ-2sinθ-2cosθ-3にこれを代入して y=(x^2-1)-2(sinθ+cosθ)-3 =x^2-1-2x-3 =x^2-2x-4 ・・・・・(ア) さて、θ=45°のとき、sinθ=cosθ=1/√2 であることに目をつけましょう。 x=sinθ+cosθ =√2{sinθ・1/√2 +cosθ・1/√2} =√2{sinθ・cos45°+cosθ・sin45°} =√2sin(θ+45°) したがって、(イ)は√2、(ウ)は45°になります。 ここで、0°≦θ<360°ですから、 45°≦θ+45°<415°となります。 このとき、sin(θ+45°)のとりうる範囲は -1≦sin(θ+45°)≦1になるので、xの範囲は、 ー√2≦x≦√2・・・・(エ) さて、最後にyの最大値、最小値を考えてみましょう。 y=x^2-2x-4 と変形できていますから、 y=(x-1)^2-5と変形してみると、これは頂点(1,ー5)下に凸の二次関数 ですね。ただし、上で求めたように、xの変域はー√2≦x≦√2です。 この変域でのyの最大値、最小値を求めればいいことになります。 yが最大になるのは、x=-√2のときですね。 これを代入して y=(-√2-1)^2-5  =2√2-2 このときのθは、x=-√2=√2sin(θ+45°)より求まる。 sin(θ+45°)=-1となるθは、θ+45°=270°だから θ=225°ですね。・・・・(オ) このときyは最大値2√2-2をとります。・・・(カ) 最小値は頂点のy座標ですから、y=ー5・・・(キ)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数II・三角関数

    【問1】x≧0を満たすすべてのxに対して、 不等式xcos^2α+2√3xsinαcosα-(x-4)sin^2α-1>0…(1) が成り立つようなαの値の範囲を求めよ。ただし、0≦α≦π/2とする。 (1)の左辺をxについて整理すると (√3sinアα+cosイα)x+(ウsinα+エ)(オsinα-カ)>0であり、 x≧0を満たすすべてのxについて(1)が成り立つ条件は √3sinアα+cosイα≧0かつ(ウsinα+エ)(オsinα-カ)>0が成り立つことである。 これより、求めるαの値の範囲はπ/キ<α≦クπ/ケコである。 【問2】0≦Θ<2πのとき、y=sin2Θ+2√2sinΘ+2√2cosΘ-4とする。 x=sinΘ+cosΘとおくと、2sinΘcosΘ=x^ア-イであるからy=x^ウ+エ√オx-カである。 ここで、x=√キsin(Θ+π/ク)であるから、xのとりうる値の範囲は-√ケ≦x≦√コである。 したがって、yはΘ=π/サのとき最大値シをとり、Θ=スπ/セのとき、最小値ソタをとる。

  • 3次関数y=x^3-2ax^2+a^2x (a>0)の0≦x≦1におけ

    3次関数y=x^3-2ax^2+a^2x (a>0)の0≦x≦1における最大値を求めたい。 まず、yはx=(ア)のときに極大値(イ)をとり、x=(ウ)のとき極小値(エ)をとり、さらに(ア)以外にy=(イ)となるようなxの値はx=(オ)である。 そこで、求める最大値をaの関数と考えてM(a)で表すと次のようになる。 a≧(カ)のとき M(a)=(キ) (カ)>a≧(ク)のとき M(a)=(ケ) (ク)>a>0のとき M(a)=(コ) という問題なんですが、(ア)~(オ)までは分かったんですが、 場合わけする部分がどうすれば解答にたどり着くか分かりません。 分かる方解説よろしくお願いします。 解答 (ア)a/3(イ)(4a^3)/27(ウ)a(エ)0(オ)4a/3 (カ)3(キ)a^2-2a+1(ク)3/4(ケ)(4a^3)/27(コ)a^2-2a+1

  • 数I(グラフ)の問題です

    θ(0°≦θ≦180°)を定数とするxの2次関数 y = { x - (1 + cosθ) }^2 - 2cosθ+ sinθがあり、このグラフの頂点をA、y軸との交点をBとする。 (1)点Aとy軸に関して対称な点をPとすると、点Pのx座標は[1]である。次に、APを1辺とする正三角形Tを考えると、θ=60°のとき、Tの面積は[2]である。 また、Tの面積の最大値は[3]である。 (2)点Bのy座標をcとする。ここで、s=sinθとおき、cをsで表すと、c=[4]となることから、cの範囲は[5]である。 解答群 [1] ア「-1-cosθ」  イ「1-cosθ」   ウ「1+cosθ」 エ「-2cosθ+sinθ」 オ「2cosθ-sinθ」 [2] ア「{(7√3)/4}-3」 イ「√3/4」   ウ「3/4」  エ「(9√3)/4」  オ「{(7√3)/4}+3」 [3] ア「√3/4」  イ「(3√3)/4」   ウ「2√3」   エ「4√3」  オ「8」 [4] ア「-s^2+s+1」  イ「-s^2+s+2」   ウ「s^2+s」  エ「s^2+s+1」  オ「s^2+s+2」 [5] ア「c≦2」  イ「3/4≦c≦2」 ウ「1≦c≦2」 エ「2≦c≦7/4」  オ「2≦c≦9/4」 [1]はウ「1+cosθ」、[2]はエ「(9√3)/4」、[4]はイ「-s^2+s+2」とそれぞれ答えを出したのですが、残る[3][5]がわかりません。 どのようにして解くのでしょうか。 よろしくお願いします。

  • 回答No.2
  • TK0318
  • ベストアンサー率34% (1261/3651)

#1の方のでいいと思います。最後の部分がないので・・・ 最小値は x=1の時最小値をとりy=-5ですね。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • sanpogo
  • ベストアンサー率12% (31/254)

イ、ウは合成公式を使ってそれぞれ√2と45 -1≦sinθ≦1 なので エは-√2≦x≦√2 y=(x―1)^2-5 yが最大になるのはx=√2の時なのでθ+45°=90° つまりθ=45° 最大値は2√2-2

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数

    0<θ<πとして y=cos(πsinθ)sin(πsinθ) ア<sinθ≦イであるから、y>0となるのは、θについて 0<sinθ<ウ/エ が成り立つときである。 したがって、y>0となるのは 0<θ<オ/カπ、キ/クπ<θ<π のときである。 という問題ですが。 ア0 イ1までしか分かりませんでした。 どなたかよろしくお願いします。

  • 数学IAの問題です

    実変数xの定義域が|2x-√5|≦5で定義される二次関数 y=2x二乗+|3x+1|+|x-1|-2 1、この関数yがy=0となるxは【ア】個存在し、最小のxの値は【イ】であり、最大のxの値は【ウ】である 2、この関数yがy<0となるxの範囲は【エ】である 3、この関数yの最小値は【オ】であり、そのときのxの値は【カ】である 4、この関数yの最大値は【キ】であり、その時のxの値は【ク】である 細かいやり方を知りたいのでなるべく詳しく書いて頂けると嬉しいです やり方を写メしたものなどもとてもうれしいです よろしくお願いします

  • 三角関数の問題です。

    [1] cos2x=cos3x (1) 2x=ア+2nπ (n=0,±1,±2,・・・) アにあてはまるものを次のうちから選べ。 0→ ±3x 1→ ±3x+π/2 2→ ±3x+π 3→ ±3x+3π/2 したがって、0<x<πの範囲で(1)を満たすxは x=イπ/ウとx=エπ/オの2個存在する。 [2] イπ/ウ=α,エπ/オ=βとし、 |sinα|=a,|cosα|=b,|sinβ|=c,|cosβ|=d とおくと,a~dの大小関係は次のようになる。   カ<キ<ク<ケ カキクケにはa~dのうちから適するものを選べ。 センター試験レベルですが解説つきで教えてくださいいい。 あとやってみた感じの難易度もおねがいします。

  • 2次関数

    aを定数とし、xの2次関数y=x^2-2(a+3)x+2a^2+8a+4…(1)のグラフをGとする。 グラフGが表す放物線の頂点のx座標が-5以上-1以下の範囲にあるとする。 このとき、aの値の範囲は-5≦a≦-8…(ア)であり、2次関数(1)の-5≦x≦-1における最大値Mは(イ)≦a≦(ウ)のとき、M=(エ)a^2+(オ)a+(カ) (キ)≦a≦(ク)のとき、M=(ケ)a^2+(コ)a+(サ)である。 したがって、2次関数(1)の-5≦x≦-1における最小値が24であるならば、a=(シ)であり、このときの最大値Mは、M=(ス)である。 1.(ア)の答えはこれで合っていますか? 2.(イ)~(ス)の求め方がわかりません。 解説よろしくお願いします。

  • 三角関数

    0≦α≦πとする。x≧0を満たすすべてのxに対して、不等式 2xsinαcosα-2(√3x+1)cos^2α-√2cosα+√3x+2≧0 が成り立つための条件は sinアα≧√イcosαウαかつ エcos^2α+√オcosα-カ≦0が成り立つことである。 これより、αの値の範囲は キ/クπ≦α≦ケ/コπである。 角がバラバラなので2倍角の公式等で揃えようとしましたが、私には無理でした。どなたか教えて下さい。

  • 数I 関数について

    解説をお願いします。 関数h(x)を 1≦xのときf(x)=x^2-4x+4 x≦1のときg(x)=-x^2+2と定める。 問1 -t≦x≦t(t>0)において |h(x)|= 0となるような異なるxの個数は 0<t<√アではイ個、√ウ≦t<エではオ個、カ≦tではキ個である。 また、-t≦x≦tにおける|h(x)|の最大値が2tであるとき t=ク、√ケ+コである。 問2 -2≦x≦pにおけるh(x)の最大値がpであるとき p=-サ、シ、スである。 答え ア2、イ0、ウ2、エ2、オ1、 カ2、キ2、ク1、ケ3、コ1、 サ2、シ2、ス4

  • 複素数の別解を教えてください

    こんな問題が入試で出ました。 z=cos72°+i*sin72°のとき、 (1) z^5=ア z^4+z^3+z^2+z=イ (2) (1)より、 cos72°+cos144°=ウ cos72°*cos144°=エ (3) よって cos72°=オ cos36°=カ 解けるのは解けたのですが、私はウを求めてから、オを求めてエ→カの順序で解きました。 ウを求めたあと、2倍角の公式でcos72°を求めたのです。 (2)を見たときに、解と係数の関係を思いついたのですが、結局使わず解けました。 ウ→エ→オ→カの順序で解ける別解法があれば教えてください。

  • 三角関数が分かりません(;o;)

    明日 数学で当たるのですが 数学が嫌いなので ぜんぜん わかりません (;o;) そこで よかったら 途中の式も入れて カタカナの部分を求めるのを お願いします! △ABCにおいて、∠B=Θ、∠C=π/2、AB=2sinΘ とする。 このとき l=sinアΘ-cosイΘ+ウ =√エsin (オΘ-π/カ.)+ウ よって、Θが 0<Θ<π/2の範囲で変化するとき Lは Θ=キπ/ クのとき、 最大値ケ+√コをとる 明日までにお願いします!

  • 絶対値の最大の求め方を教えてください

    予備校のテキストに以下のような問題があります。 関数 y=|x^2-4x| (a>0) 0≦x≦aにおける最大値は、 0<a≦(ア) のとき -(イ)^2+(ウ)a, (ア)<a≦(エ)+(オ)√(カ)のとき(キ), (エ)+(オ)√(カ)<a のとき (ク)^2-(ケ)a である。 一行目の答えは『0<a≦2 のとき -a^2+4a,』だと思うのですが、それ以降がさっぱりわかりません… 回答を求める方法を教えていただきたいです。

  • 三角関数の最大・最小の問題がわかりません

    0≦θ<2πのとき、y=sin2θ+√2sinθ+√2cosθ-2とする。 x=sinθ+cosθとおくと、2sinθcosθ=x^2-1であるから y=x^2+√2 x-3である。 ここで、x=√2 sin(θ+π/4)であるから、xのとりうる値の範囲は-√2≦x≦√2である。 ここまではわかりました、何か間違っていたら教えてください。ここからがわかりません。 したがって、yはθ=π/ア のとき、最大値イをとり、 θ=ウπ、エπのとき最小値オをとる。 解法お願いします。

専門家に質問してみよう